IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0236638.html
   My bibliography  Save this article

A global meta-analysis of livestock grazing impacts on soil properties

Author

Listed:
  • Liming Lai
  • Sandeep Kumar

Abstract

Grazing effects on soil properties under different soil and environmental conditions across the globe are often controversial. Therefore, it is essential to evaluate the overall magnitude and direction of the grazing effects on soils. This global meta-analysis was conducted using the mixed model method to address the overall effects of grazing intensities (heavy, moderate, and light) on 15 soil properties based on 287 papers published globally from 2007 to 2019. Our findings showed that heavy grazing significantly increased the soil BD (11.3% relative un-grazing) and PR (52.5%) and reduced SOC (-10.8%), WC (-10.8%), NO3- (-23.5%), and MBC (-27.9%) at 0–10 cm depth, and reduced SOC (-22.5%) and TN (-19.9%) at 10–30 cm depth. Moderate grazing significantly increased the BD (7.5%), PR (46.0%), and P (18.9%) (0–10 cm), and increased pH (4.1%) and decreased SOC (-16.4%), TN (-10.6%), and P (-23.9%) (10–30 cm). Light grazing significantly increased the SOC (10.8%) and NH4+ (28.7%) (0–10 cm). Heavy grazing showed much higher mean probability (0.70) leading to overgrazing than the moderate (0.14) and light (0.10) grazing. These findings indicate that, globally, compared to un-grazing, heavy grazing significantly increased soil compaction and reduced SOC, NO3-, and soil moisture. Moderate grazing significantly increased soil compaction and alkalinity and reduced SOC and TN. Light grazing significantly increased SOC and NH4+. Cattle grazing impacts on soil compaction, SOC, TN, and available K were higher than sheep grazing, but lower for PR. Climate significantly impacted grazing effects on SOM, TN, available P, NH4+, EC, CEC, and PR. Heavy grazing can be more detrimental to soil quality based on BD, SOC, TN, C: N, WC, and K than moderate and light grazing. However, global grazing intensities did not significantly impact most of the 15 soil properties, and the grazing effects on them had insignificant changes over the years.

Suggested Citation

  • Liming Lai & Sandeep Kumar, 2020. "A global meta-analysis of livestock grazing impacts on soil properties," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-17, August.
  • Handle: RePEc:plo:pone00:0236638
    DOI: 10.1371/journal.pone.0236638
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236638
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0236638&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0236638?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yunqing Hao & Zhengwei He, 2019. "Effects of grazing patterns on grassland biomass and soil environments in China: A meta-analysis," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meki, Manyowa N. & Osorio-Leyton, Javier & Steglich, Evelyn M. & Kiniry, Jim R. & Propato, Marco & Winchell, Mike & Rathjens, Hendrik & Angerer, Jay P. & Norfleet, Lee M., 2023. "Plant parameterization and APEXgraze model calibration and validation for US land resource region H grazing lands," Agricultural Systems, Elsevier, vol. 207(C).
    2. Xuemin Gong & Yijia Wang & Tianyu Zhan & Chenxu Wang & Changjia Li & Yanxu Liu, 2023. "Advances in Meta-Analysis of the Effects of Grazing on Grassland Ecosystems in China," Agriculture, MDPI, vol. 13(5), pages 1-16, May.
    3. Zhiwen Ma & Wenping Qin & Zhaoqi Wang & Chenglong Han & Xiang Liu & Xiaotao Huang, 2022. "A Meta-Analysis of Soil Organic Carbon Response to Livestock Grazing in Grassland of the Tibetan Plateau," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
    4. Michael Aide & Indi Braden & Susan Murray & Collin Schabbing & Sophia Scott & Samantha Siemers & Sven Svenson & Julie Weathers, 2021. "Optimizing Beef Cow-Calf Grazing across Missouri with an Emphasis on Protecting Ecosystem Services," Land, MDPI, vol. 10(10), pages 1-12, October.
    5. Lei Lei & Jiahua Zheng & Shaoyu Li & Lishan Yang & Wenqiong Wang & Feng Zhang & Bin Zhang, 2023. "Soil Hydrological Properties’ Response to Long-Term Grazing on a Desert Steppe in Inner Mongolia," Sustainability, MDPI, vol. 15(23), pages 1-11, November.
    6. Rafael Blanco-Sepúlveda & María Luisa Gómez-Moreno & Francisco Lima, 2024. "An Approach to the Key Soil Physical Properties for Assessing Soil Compaction Due to Livestock Grazing in Mediterranean Mountain Areas," Sustainability, MDPI, vol. 16(10), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Myrgiotis, Vasileios & Blei, Emanuel & Clement, Rob & Jones, Stephanie K. & Keane, Ben & Lee, Mark A. & Levy, Peter E. & Rees, Robert M. & Skiba, Ute M. & Smallman, Thomas Luke & Toet, Sylvia & Willia, 2020. "A model-data fusion approach to analyse carbon dynamics in managed grasslands," Agricultural Systems, Elsevier, vol. 184(C).
    2. Zhilu Sheng & Jiaqiang Du & Bingqing Sun & Jialin Mao & Yangchengsi Zhang & Jing Zhang & Zhaoyan Diao, 2022. "The Role of Plant Functional Diversity in Regulating Soil Organic Carbon Stocks under Different Grazing Intensities in Temperate Grassland, China," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
    3. Al Mamun, Mohammad Abdullah & Garba, Ismail Ibrahim & Campbell, Shane & Dargusch, Paul & deVoil, Peter & Aziz, Ammar Abdul, 2023. "Biomass production of a sub-tropical grass under different photovoltaic installations using different grazing strategies," Agricultural Systems, Elsevier, vol. 208(C).
    4. Xu Bi & Bo Li & Xiangchao Xu & Lixin Zhang, 2020. "Response of Vegetation and Soil Characteristics to Grazing Disturbance in Mountain Meadows and Temperate Typical Steppe in the Arid Regions of Central Asian, Xinjiang," IJERPH, MDPI, vol. 17(12), pages 1-16, June.
    5. Virginia Anne Kowal & Julian Ahlborn & Chantsallkham Jamsranjav & Otgonsuren Avirmed & Rebecca Chaplin-Kramer, 2021. "Modeling Integrated Impacts of Climate Change and Grazing on Mongolia’s Rangelands," Land, MDPI, vol. 10(4), pages 1-28, April.
    6. Ranjan, Ram, 2024. "Creating synergies between payments for ecosystem services, green bonds, and catastrophe insurance markets for enhanced environmental resilience," Land Use Policy, Elsevier, vol. 136(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0236638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.