IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14065-d956589.html
   My bibliography  Save this article

A Meta-Analysis of Soil Organic Carbon Response to Livestock Grazing in Grassland of the Tibetan Plateau

Author

Listed:
  • Zhiwen Ma

    (State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China)

  • Wenping Qin

    (State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China)

  • Zhaoqi Wang

    (State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China)

  • Chenglong Han

    (State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China)

  • Xiang Liu

    (State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China)

  • Xiaotao Huang

    (Key Laboratory of Restoration Ecology for Cold Regions Laboratory in Qinghai, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
    Key Laboratory of Adaption and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China)

Abstract

Known as the “roof of the world”, the Tibetan Plateau hosts the largest pastoral alpine ecosystem in the world. Nevertheless, there is currently no consensus on how soil organic carbon (SOC) stock changes after livestock grazing on the grassland of this region. Here, a meta-analysis was performed based on 55 published studies to quantify the livestock grazing-induced changes in SOC stock (0–30 cm) in grassland on the Tibetan Plateau. The results showed that livestock grazing significantly increased bulk density by an average of 11.5%, indicating that significant soil compaction was caused by livestock grazing. In contrast, SOC content and stock significantly decreased by 14.4% and 11.9% after livestock grazing, respectively. The decline rate of SOC stock was higher in alpine meadow (−12.4%) than that in alpine steppe (−8.8%), but there was no significant difference between the two rates. The SOC stocks decreased by 10.1%, 6.2% and 20.1% under light grazing, moderate grazing and heavy grazing, respectively. The decline rate of SOC stock under moderate grazing was significantly lower than that under heavy grazing. For different livestock types, it was observed that yak grazing significantly decreased SOC stock by 15.3%. Although the decline rate induced by yak grazing was higher than those induced by Tibetan sheep grazing and mixed grazing, no significant difference was detected among them. Similarly, the grazing-induced SOC declines also did not differ significantly among subgroups of grazing season. The positive relationships between SOC stock and plant biomass indicated that the decreased plant biomass was a likely reason for the declined SOC stock under grazing condition. The findings suggested that moderate grazing with Tibetan sheep in the warm season may minimize SOC losses from grazing activities in alpine grassland on the Tibetan Plateau.

Suggested Citation

  • Zhiwen Ma & Wenping Qin & Zhaoqi Wang & Chenglong Han & Xiang Liu & Xiaotao Huang, 2022. "A Meta-Analysis of Soil Organic Carbon Response to Livestock Grazing in Grassland of the Tibetan Plateau," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14065-:d:956589
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14065/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14065/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Viechtbauer, Wolfgang, 2010. "Conducting Meta-Analyses in R with the metafor Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i03).
    2. Liming Lai & Sandeep Kumar, 2020. "A global meta-analysis of livestock grazing impacts on soil properties," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-17, August.
    3. Cameron M. Pittelkow & Xinqiang Liang & Bruce A. Linquist & Kees Jan van Groenigen & Juhwan Lee & Mark E. Lundy & Natasja van Gestel & Johan Six & Rodney T. Venterea & Chris van Kessel, 2015. "Productivity limits and potentials of the principles of conservation agriculture," Nature, Nature, vol. 517(7534), pages 365-368, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luncheng You & Gerard H. Ros & Yongliang Chen & Qi Shao & Madaline D. Young & Fusuo Zhang & Wim de Vries, 2023. "Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. David Weisberger & Virginia Nichols & Matt Liebman, 2019. "Does diversifying crop rotations suppress weeds? A meta-analysis," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-12, July.
    3. Whitney S Beck & Ed K Hall, 2018. "Confounding factors in algal phosphorus limitation experiments," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-19, October.
    4. Tianyi Qiu & Yu Shi & Josep Peñuelas & Ji Liu & Qingliang Cui & Jordi Sardans & Feng Zhou & Longlong Xia & Weiming Yan & Shuling Zhao & Shushi Peng & Jinshi Jian & Qinsi He & Wenju Zhang & Min Huang &, 2024. "Optimizing cover crop practices as a sustainable solution for global agroecosystem services," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Xindong Xue & W. Robert Reed & Robbie C.M. van Aert, 2022. "Social Capital and Economic Growth: A Meta-Analysis," Working Papers in Economics 22/20, University of Canterbury, Department of Economics and Finance.
    6. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Bart Verkuil & Serpil Atasayi & Marc L Molendijk, 2015. "Workplace Bullying and Mental Health: A Meta-Analysis on Cross-Sectional and Longitudinal Data," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-16, August.
    8. Francesca Pilotto & Ingolf Kühn & Rita Adrian & Renate Alber & Audrey Alignier & Christopher Andrews & Jaana Bäck & Luc Barbaro & Deborah Beaumont & Natalie Beenaerts & Sue Benham & David S. Boukal & , 2020. "Meta-analysis of multidecadal biodiversity trends in Europe," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    9. repec:cup:judgdm:v:15:y:2020:i:6:p:972-988 is not listed on IDEAS
    10. Jonas Schmidt & Tammo H. A. Bijmolt, 2020. "Accurately measuring willingness to pay for consumer goods: a meta-analysis of the hypothetical bias," Journal of the Academy of Marketing Science, Springer, vol. 48(3), pages 499-518, May.
    11. Mario Herberz & Tobias Brosch & Ulf J. J. Hahnel, 2020. "Kilo what? Default units increase value sensitivity in joint evaluations of energy efficiency," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(6), pages 972-988, November.
    12. Piers Steel & Sjoerd Beugelsdijk & Herman Aguinis, 2021. "The anatomy of an award-winning meta-analysis: Recommendations for authors, reviewers, and readers of meta-analytic reviews," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 52(1), pages 23-44, February.
    13. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    14. Nana Chen & Xin Zhao & Shuxian Dou & Aixing Deng & Chengyan Zheng & Tiehua Cao & Zhenwei Song & Weijian Zhang, 2023. "The Tradeoff between Maintaining Maize ( Zea mays L.) Productivity and Improving Soil Quality under Conservation Tillage Practice in Semi-Arid Region of Northeast China," Agriculture, MDPI, vol. 13(2), pages 1-17, February.
    15. Molo, Fabio & Pawel, Samuel & Fraga González, Gorka, 2024. "A Robustness Reproduction of "A Systematic Review and Meta-Analysis of 90 Cohort Studies of Social Isolation, Loneliness and Mortality"," I4R Discussion Paper Series 169, The Institute for Replication (I4R).
    16. Augusteijn, Hilde Elisabeth Maria & van Aert, Robbie Cornelis Maria & van Assen, Marcel A. L. M., 2021. "Posterior Probabilities of Effect Sizes and Heterogeneity in Meta-Analysis: An Intuitive Approach of Dealing with Publication Bias," OSF Preprints avkgj, Center for Open Science.
    17. Georgiou, George K. & Guo, Kan & Naveenkumar, Nithya & Vieira, Ana Paula Alves & Das, J.P., 2020. "PASS theory of intelligence and academic achievement: A meta-analytic review," Intelligence, Elsevier, vol. 79(C).
    18. Geller, Susann & Wilhelm, Oliver & Wacker, Jan & Hamm, Alfons & Hildebrandt, Andrea, 2017. "Associations of the COMT Val158Met polymorphism with working memory and intelligence – A review and meta-analysis," Intelligence, Elsevier, vol. 65(C), pages 75-92.
    19. Gignac, Gilles E. & Bates, Timothy C., 2017. "Brain volume and intelligence: The moderating role of intelligence measurement quality," Intelligence, Elsevier, vol. 64(C), pages 18-29.
    20. Stephan Kambach & Ingolf Kühn & Bastien Castagneyrol & Helge Bruelheide, 2016. "The Impact of Tree Diversity on Different Aspects of Insect Herbivory along a Global Temperature Gradient - A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-14, November.
    21. Qingshui Yu & Chenqi He & Mark A. Anthony & Bernhard Schmid & Arthur Gessler & Chen Yang & Danhua Zhang & Xiaofeng Ni & Yuhao Feng & Jiangling Zhu & Biao Zhu & Shaopeng Wang & Chengjun Ji & Zhiyao Tan, 2024. "Decoupled responses of plants and soil biota to global change across the world’s land ecosystems," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14065-:d:956589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.