IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0234023.html
   My bibliography  Save this article

Quantify the role of superspreaders -opinion leaders- on COVID-19 information propagation in the Chinese Sina-microblog

Author

Listed:
  • Fulian Yin
  • Xinyu Xia
  • Nan Song
  • Lingyao Zhu
  • Jianhong Wu

Abstract

Backgroud: Effective communication of accurate information through social media constitutes an important component of public health interventions in modern time, when traditional public health approaches such as contact tracing, quarantine and isolation are among the few options for the containing the disease spread in the population. The success of control of COVID-19 outbreak started from Wuhan, the capital city of Hubei Province of China relies heavily on the resilience of residents to follow public health interventions which induce substantial interruption of social-economic activities, and evidence shows that opinion leaders have been playing significant roles in the propagation of epidemic information and public health policy and implementations. Methods: We design a mathematical model to quantify the roles of information superspreaders in single specific information which outbreaks rapidly and usually has a short duration period, and to examine the information propagation dynamics in the Chinese Sina-microblog. Our opinion-leader susceptible-forwarding-immune (OL-SFI) model is formulated to track the temporal evolution of forwarding quantities generated by opinion leaders and normal users. Results: Data fitting from the real data of COVID-19 obtained from Chinese Sina-microblog can identify the different contact rates and forwarding probabilities (and hence calculate the basic information forwarding reproduction number of superspreaders), and can be used to evaluate the roles of opinion leaders in different stages of the information propagation and the outbreak unfolding. Conclusions: The parameterized model can be used to nearcast the information propagation trend, and the model-based sensitivity analysis can help to explore important factors for the roles of opinion leaders.

Suggested Citation

  • Fulian Yin & Xinyu Xia & Nan Song & Lingyao Zhu & Jianhong Wu, 2020. "Quantify the role of superspreaders -opinion leaders- on COVID-19 information propagation in the Chinese Sina-microblog," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-20, June.
  • Handle: RePEc:plo:pone00:0234023
    DOI: 10.1371/journal.pone.0234023
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0234023
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0234023&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0234023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Nan & Huang, Hong & Su, Boni & Zhao, Jinlong & Zhang, Bo, 2014. "Dynamic 8-state ICSAR rumor propagation model considering official rumor refutation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 333-346.
    2. Su, Qiang & Huang, Jiajia & Zhao, Xiande, 2015. "An information propagation model considering incomplete reading behavior in microblog," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 55-63.
    3. Hu, Yuhan & Pan, Qiuhui & Hou, Wenbing & He, Mingfeng, 2018. "Rumor spreading model with the different attitudes towards rumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 331-344.
    4. Liu, Yu & Wang, Bai & Wu, Bin & Shang, Suiming & Zhang, Yunlei & Shi, Chuan, 2016. "Characterizing super-spreading in microblog: An epidemic-based information propagation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 202-218.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Ping & Geng, Dongqing & Lin, Tao & Ding, Li, 2021. "Coupled propagation dynamics on multiplex activity-driven networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    2. Lu, Peng & Yao, Qi & Lu, Pengfei, 2019. "Two-stage predictions of evolutionary dynamics during the rumor dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 349-369.
    3. Lu, Peng, 2019. "Heterogeneity, judgment, and social trust of agents in rumor spreading," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 447-461.
    4. Jain, Lokesh, 2022. "An entropy-based method to control COVID-19 rumors in online social networks using opinion leaders," Technology in Society, Elsevier, vol. 70(C).
    5. Lu, Peng & Deng, Liping & Liao, Hongbing, 2019. "Conditional effects of individual judgment heterogeneity in information dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 335-344.
    6. Yao Hongxing & Zou Yushi, 2019. "Research on Rumor Spreading Model with Time Delay and Control Effect," Journal of Systems Science and Information, De Gruyter, vol. 7(4), pages 373-389, August.
    7. Liang’an Huo & Yuqing Zhang, 2022. "Effect of Global and Local Refutation Mechanism on Rumor Propagation in Heterogeneous Network," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
    8. Xia, Yang & Jiang, Haijun & Yu, Zhiyong, 2022. "Global dynamics of ILSR rumor spreading model with general nonlinear spreading rate in multi-lingual environment," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    9. Tingqiang Chen & Lei Wang & Jining Wang & Qi Yang, 2017. "A Network Diffusion Model of Food Safety Scare Behavior considering Information Transparency," Complexity, Hindawi, vol. 2017, pages 1-16, December.
    10. Hosni, Adil Imad Eddine & Li, Kan & Ahmad, Sadique, 2020. "Analysis of the impact of online social networks addiction on the propagation of rumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    11. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    12. Nwaibeh, E.A. & Chikwendu, C.R., 2023. "A deterministic model of the spread of scam rumor and its numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 111-129.
    13. Yu, Shuzhen & Yu, Zhiyong & Jiang, Haijun, 2024. "A rumor propagation model in multilingual environment with time and state dependent impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    14. Jie, Renlong & Qiao, Jian & Xu, Genjiu & Meng, Yingying, 2016. "A study on the interaction between two rumors in homogeneous complex networks under symmetric conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 129-142.
    15. Zhang, N. & Huang, H. & Duarte, M. & Zhang, J., 2016. "Risk analysis for rumor propagation in metropolises based on improved 8-state ICSAR model and dynamic personal activity trajectories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 403-419.
    16. Kumar, Ajay & Swarnakar, Pradip & Jaiswal, Kamya & Kurele, Ritika, 2020. "SMIR model for controlling the spread of information in social networking sites," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    17. Yu, Shuzhen & Yu, Zhiyong & Jiang, Haijun & Li, Jiarong, 2021. "Dynamical study and event-triggered impulsive control of rumor propagation model on heterogeneous social network incorporating delay," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    18. Zhang, Yi & Xu, Jiuping & Nekovee, Maziar & Li, Zongmin, 2022. "The impact of official rumor-refutation information on the dynamics of rumor spread," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    19. Liu, Xiaoyang & He, Daobing & Yang, Linfeng & Liu, Chao, 2019. "A novel negative feedback information dissemination model based on online social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 371-389.
    20. Ding, Haixin & Xie, Li, 2023. "Simulating rumor spreading and rebuttal strategy with rebuttal forgetting: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0234023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.