IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0231035.html
   My bibliography  Save this article

Size agnostic change point detection framework for evolving networks

Author

Listed:
  • Hadar Miller
  • Osnat Mokryn

Abstract

Changes in the structure of observed social and complex networks can indicate a significant underlying change in an organization, or reflect the response of the network to an external event. Automatic detection of change points in evolving networks is rudimentary to the research and the understanding of the effect of such events on networks. Here we present an easy-to-implement and fast framework for change point detection in evolving temporal networks. Our method is size agnostic, and does not require either prior knowledge about the network’s size and structure, nor does it require obtaining historical information or nodal identities over time. We tested it over both synthetic data derived from dynamic models and two real datasets: Enron email exchange and AskUbuntu forum. Our framework succeeds with both precision and recall and outperforms previous solutions.

Suggested Citation

  • Hadar Miller & Osnat Mokryn, 2020. "Size agnostic change point detection framework for evolving networks," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-23, April.
  • Handle: RePEc:plo:pone00:0231035
    DOI: 10.1371/journal.pone.0231035
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231035
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0231035&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0231035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiao Zhang & Cristopher Moore & Mark E. J. Newman, 2017. "Random graph models for dynamic networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(10), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González-Parra, Gilberto & Villanueva-Oller, Javier & Navarro-González, F.J. & Ceberio, Josu & Luebben, Giulia, 2024. "A network-based model to assess vaccination strategies for the COVID-19 pandemic by using Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Wei Zhao & S.N. Lahiri, 2022. "Estimation of the Parameters in an Expanding Dynamic Network Model," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 261-282, June.
    3. Piero Mazzarisi & Paolo Barucca & Fabrizio Lillo & Daniele Tantari, 2017. "A dynamic network model with persistent links and node-specific latent variables, with an application to the interbank market," Papers 1801.00185, arXiv.org.
    4. Anirban Dasgupta & Srijan Sengupta, 2022. "Scalable Estimation of Epidemic Thresholds via Node Sampling," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 321-344, June.
    5. Vaidya, Tushar & Chotibut, Thiparat & Piliouras, Georgios, 2021. "Broken detailed balance and non-equilibrium dynamics in noisy social learning models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0231035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.