IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0228520.html
   My bibliography  Save this article

Compressive Big Data Analytics: An ensemble meta-algorithm for high-dimensional multisource datasets

Author

Listed:
  • Simeone Marino
  • Yi Zhao
  • Nina Zhou
  • Yiwang Zhou
  • Arthur W Toga
  • Lu Zhao
  • Yingsi Jian
  • Yichen Yang
  • Yehu Chen
  • Qiucheng Wu
  • Jessica Wild
  • Brandon Cummings
  • Ivo D Dinov

Abstract

Health advances are contingent on continuous development of new methods and approaches to foster data-driven discovery in the biomedical and clinical sciences. Open-science and team-based scientific discovery offer hope for tackling some of the difficult challenges associated with managing, modeling, and interpreting of large, complex, and multisource data. Translating raw observations into useful information and actionable knowledge depends on effective domain-independent reproducibility, area-specific replicability, data curation, analysis protocols, organization, management and sharing of health-related digital objects. This study expands the functionality and utility of an ensemble semi-supervised machine learning technique called Compressive Big Data Analytics (CBDA). Applied to high-dimensional data, CBDA (1) identifies salient features and key biomarkers enabling reliable and reproducible forecasting of binary, multinomial and continuous outcomes (i.e., feature mining); and (2) suggests the most accurate algorithms/models for predictive analytics of the observed data (i.e., model mining). The method relies on iterative subsampling, combines function optimization and statistical inference, and generates ensemble predictions for observed univariate outcomes. The novelty of this study is highlighted by a new and expanded set of CBDA features including (1) efficiently handling extremely large datasets (>100,000 cases and >1,000 features); (2) generalizing the internal and external validation steps; (3) expanding the set of base-learners for joint ensemble prediction; (4) introducing an automated selection of CBDA specifications; and (5) providing mechanisms to assess CBDA convergence, evaluate the prediction accuracy, and measure result consistency. To ground the mathematical model and the corresponding computational algorithm, CBDA 2.0 validation utilizes synthetic datasets as well as a population-wide census-like study. Specifically, an empirical validation of the CBDA technique is based on a translational health research using a large-scale clinical study (UK Biobank), which includes imaging, cognitive, and clinical assessment data. The UK Biobank archive presents several difficult challenges related to the aggregation, harmonization, modeling, and interrogation of the information. These problems are related to the complex longitudinal structure, variable heterogeneity, feature multicollinearity, incongruency, and missingness, as well as violations of classical parametric assumptions. Our results show the scalability, efficiency, and usability of CBDA to interrogate complex data into structural information leading to derived knowledge and translational action. Applying CBDA 2.0 to the UK Biobank case-study allows predicting various outcomes of interest, e.g., mood disorders and irritability, and suggests new and exciting avenues of evidence-based research in the context of identifying, tracking, and treating mental health and aging-related diseases. Following open-science principles, we share the entire end-to-end protocol, source-code, and results. This facilitates independent validation, result reproducibility, and team-based collaborative discovery.

Suggested Citation

  • Simeone Marino & Yi Zhao & Nina Zhou & Yiwang Zhou & Arthur W Toga & Lu Zhao & Yingsi Jian & Yichen Yang & Yehu Chen & Qiucheng Wu & Jessica Wild & Brandon Cummings & Ivo D Dinov, 2020. "Compressive Big Data Analytics: An ensemble meta-algorithm for high-dimensional multisource datasets," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.
  • Handle: RePEc:plo:pone00:0228520
    DOI: 10.1371/journal.pone.0228520
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0228520
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0228520&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0228520?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. van der Laan Mark J. & Rubin Daniel, 2006. "Targeted Maximum Likelihood Learning," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-40, December.
    2. Rubin Daniel & Dudoit Sandrine & van der Laan Mark, 2006. "A Method to Increase the Power of Multiple Testing Procedures Through Sample Splitting," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-20, August.
    3. Simeone Marino & Jiachen Xu & Yi Zhao & Nina Zhou & Yiwang Zhou & Ivo D Dinov, 2018. "Controlled feature selection and compressive big data analytics: Applications to biomedical and health studies," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-21, August.
    4. Torsten Hothorn, 2017. "PETER BUEHLMANN , PETROS DRINEAS , MICHAEL KANE , MARK VAN DER LAAN . Handbook of Big Data . Boca Raton : CRC Press," Biometrics, The International Biometric Society, vol. 73(3), pages 1058-1059, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    2. S Ariane Christie & Amanda S Conroy & Rachael A Callcut & Alan E Hubbard & Mitchell J Cohen, 2019. "Dynamic multi-outcome prediction after injury: Applying adaptive machine learning for precision medicine in trauma," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-13, April.
    3. Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.
    4. Michael Rosenblum & Nicholas P. Jewell & Mark van der Laan & Stephen Shiboski & Ariane van der Straten & Nancy Padian, 2009. "Analysing direct effects in randomized trials with secondary interventions: an application to human immunodeficiency virus prevention trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(2), pages 443-465, April.
    5. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
    6. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.
    7. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    8. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    9. Stitelman Ori M & van der Laan Mark J., 2010. "Collaborative Targeted Maximum Likelihood for Time to Event Data," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-46, June.
    10. Martin Huber & Michael Lechner & Giovanni Mellace, 2016. "The Finite Sample Performance of Estimators for Mediation Analysis Under Sequential Conditional Independence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 139-160, January.
    11. Gruber Susan & van der Laan Mark J., 2010. "A Targeted Maximum Likelihood Estimator of a Causal Effect on a Bounded Continuous Outcome," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-18, August.
    12. Kara E. Rudolph & Jonathan Levy & Mark J. van der Laan, 2021. "Transporting stochastic direct and indirect effects to new populations," Biometrics, The International Biometric Society, vol. 77(1), pages 197-211, March.
    13. Gruber Susan & van der Laan Mark J., 2010. "An Application of Collaborative Targeted Maximum Likelihood Estimation in Causal Inference and Genomics," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-31, May.
    14. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    15. Antonelli Joseph & Cefalu Matthew, 2020. "Averaging causal estimators in high dimensions," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 92-107, January.
    16. Tuglus Catherine & van der Laan Mark J., 2011. "Repeated Measures Semiparametric Regression Using Targeted Maximum Likelihood Methodology with Application to Transcription Factor Activity Discovery," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-31, January.
    17. Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022. "Unconditional quantile regression with high‐dimensional data," Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.
    18. Iván Díaz & Elizabeth Colantuoni & Daniel F. Hanley & Michael Rosenblum, 2019. "Improved precision in the analysis of randomized trials with survival outcomes, without assuming proportional hazards," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 439-468, July.
    19. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    20. Rose Sherri & van der Laan Mark J., 2008. "Simple Optimal Weighting of Cases and Controls in Case-Control Studies," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-26, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0228520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.