IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0202674.html
   My bibliography  Save this article

Controlled feature selection and compressive big data analytics: Applications to biomedical and health studies

Author

Listed:
  • Simeone Marino
  • Jiachen Xu
  • Yi Zhao
  • Nina Zhou
  • Yiwang Zhou
  • Ivo D Dinov

Abstract

The theoretical foundations of Big Data Science are not fully developed, yet. This study proposes a new scalable framework for Big Data representation, high-throughput analytics (variable selection and noise reduction), and model-free inference. Specifically, we explore the core principles of distribution-free and model-agnostic methods for scientific inference based on Big Data sets. Compressive Big Data analytics (CBDA) iteratively generates random (sub)samples from a big and complex dataset. This subsampling with replacement is conducted on the feature and case levels and results in samples that are not necessarily consistent or congruent across iterations. The approach relies on an ensemble predictor where established model-based or model-free inference techniques are iteratively applied to preprocessed and harmonized samples. Repeating the subsampling and prediction steps many times, yields derived likelihoods, probabilities, or parameter estimates, which can be used to assess the algorithm reliability and accuracy of findings via bootstrapping methods, or to extract important features via controlled variable selection. CBDA provides a scalable algorithm for addressing some of the challenges associated with handling complex, incongruent, incomplete and multi-source data and analytics challenges. Albeit not fully developed yet, a CBDA mathematical framework will enable the study of the ergodic properties and the asymptotics of the specific statistical inference approaches via CBDA. We implemented the high-throughput CBDA method using pure R as well as via the graphical pipeline environment. To validate the technique, we used several simulated datasets as well as a real neuroimaging-genetics of Alzheimer’s disease case-study. The CBDA approach may be customized to provide generic representation of complex multimodal datasets and to provide stable scientific inference for large, incomplete, and multisource datasets.

Suggested Citation

  • Simeone Marino & Jiachen Xu & Yi Zhao & Nina Zhou & Yiwang Zhou & Ivo D Dinov, 2018. "Controlled feature selection and compressive big data analytics: Applications to biomedical and health studies," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-21, August.
  • Handle: RePEc:plo:pone00:0202674
    DOI: 10.1371/journal.pone.0202674
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0202674
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0202674&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0202674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simeone Marino & Yi Zhao & Nina Zhou & Yiwang Zhou & Arthur W Toga & Lu Zhao & Yingsi Jian & Yichen Yang & Yehu Chen & Qiucheng Wu & Jessica Wild & Brandon Cummings & Ivo D Dinov, 2020. "Compressive Big Data Analytics: An ensemble meta-algorithm for high-dimensional multisource datasets," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0202674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.