IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0223789.html
   My bibliography  Save this article

An alternative procedure to obtain the mortality rate with non-linear functions: Application to the case of the Spanish population

Author

Listed:
  • Marcos Postigo-Boix
  • Ramón Agüero
  • José L Melús-Moreno

Abstract

This paper presents an alternative calculation procedure to calculate the mortality rate, exploiting the data available in the Eurostat demography database for Spain. This methodology has been devised based on two of the most widely known and widespread models to establish the mortality rate: The Gompertz-Makeham (GM) and Lee-Carter (LC) models. Our main goal is to obtain a model yielding a similar accuracy than LC or GM, but able to capture the variation of their parameters over time and ages. The method proposed herewith works by applying simple or double fitting, with non-linear functions, to the values of the parameters considered by each one of such models. One of the main advantages of our approach is that we considerably reduce the amount of data that is required to establish the mortality rate, with respect to what would be needed if the traditional models were used. On the other hand, it also allows analyzing the evolution of the mortality rate, even if no real data was available for a particular year. The results evince that, besides fulfilling the two aforementioned goals, the proposed scheme yields an estimation error that is comparable with that offered by the traditional approach.

Suggested Citation

  • Marcos Postigo-Boix & Ramón Agüero & José L Melús-Moreno, 2019. "An alternative procedure to obtain the mortality rate with non-linear functions: Application to the case of the Spanish population," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-16, October.
  • Handle: RePEc:plo:pone00:0223789
    DOI: 10.1371/journal.pone.0223789
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223789
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0223789&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0223789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arthur Renshaw & Steven Haberman, 2003. "Lee–Carter mortality forecasting: a parallel generalized linear modelling approach for England and Wales mortality projections," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 119-137, January.
    2. Ronald Lee, 2000. "The Lee-Carter Method for Forecasting Mortality, with Various Extensions and Applications," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(1), pages 80-91.
    3. Renshaw, A. E. & Haberman, S., 2003. "Lee-Carter mortality forecasting with age-specific enhancement," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 255-272, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gisou Díaz-Rojo & Ana Debón & Jaime Mosquera, 2020. "Multivariate Control Chart and Lee–Carter Models to Study Mortality Changes," Mathematics, MDPI, vol. 8(11), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurent Callot & Niels Haldrup & Malene Kallestrup-Lamb, 2016. "Deterministic and stochastic trends in the Lee–Carter mortality model," Applied Economics Letters, Taylor & Francis Journals, vol. 23(7), pages 486-493, May.
    2. Debón, A. & Montes, F. & Puig, F., 2008. "Modelling and forecasting mortality in Spain," European Journal of Operational Research, Elsevier, vol. 189(3), pages 624-637, September.
    3. Dorina Lazar & Michel M. Denuit, 2009. "A multivariate time series approach to projected life tables," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(6), pages 806-823, November.
    4. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    5. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    6. Hainaut, Donatien, 2012. "Multidimensional Lee–Carter model with switching mortality processes," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 236-246.
    7. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    8. D’Amato, Valeria & Haberman, Steven & Piscopo, Gabriella & Russolillo, Maria, 2012. "Modelling dependent data for longevity projections," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 694-701.
    9. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    10. Jennifer L. Wang & H.C. Huang & Sharon S. Yang & Jeffrey T. Tsai, 2010. "An Optimal Product Mix for Hedging Longevity Risk in Life Insurance Companies: The Immunization Theory Approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 473-497, June.
    11. Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
    12. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    13. Lee, Yung-Tsung & Wang, Chou-Wen & Huang, Hong-Chih, 2012. "On the valuation of reverse mortgages with regular tenure payments," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 430-441.
    14. Michel Denuit, 2009. "Life Anuities with Stochastic Survival Probabilities: A Review," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 463-489, September.
    15. Shang, Han Lin & Smith, Peter W.F. & Bijak, Jakub & Wiśniowski, Arkadiusz, 2016. "A multilevel functional data method for forecasting population, with an application to the United Kingdom," International Journal of Forecasting, Elsevier, vol. 32(3), pages 629-649.
    16. Ekheden, Erland & Hössjer, Ola, 2015. "Multivariate time series modeling, estimation and prediction of mortalities," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 156-171.
    17. Heather Booth & Rob Hyndman & Leonie Tickle & Piet de Jong, 2006. "Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 15(9), pages 289-310.
    18. Luis E. Nieto-Barajas, 2022. "Bayesian nonparametric dynamic hazard rates in evolutionary life tables," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 319-334, April.
    19. Shen, Yang & Siu, Tak Kuen, 2013. "Longevity bond pricing under stochastic interest rate and mortality with regime-switching," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 114-123.
    20. Pitacco, Ermanno, 2004. "Survival models in a dynamic context: a survey," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 279-298, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0223789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.