IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0204003.html
   My bibliography  Save this article

An improved collaborative filtering method based on similarity

Author

Listed:
  • Junmei Feng
  • Xiaoyi Fengs
  • Ning Zhang
  • Jinye Peng

Abstract

The recommender system is widely used in the field of e-commerce and plays an important role in guiding customers to make smart decisions. Although many algorithms are available in the recommender system, collaborative filtering is still one of the most used and successful recommendation technologies. In collaborative filtering, similarity calculation is the main issue. In order to improve the accuracy and quality of recommendations, we proposed an improved similarity model, which takes three impact factors of similarity into account to minimize the deviation of similarity calculation. Compared with the traditional similarity measure, the advantages of our proposed model are that it makes full use of rating data and solves the problem of co-rated items. To validate the efficiency of the proposed algorithm, experiments were performed on four datasets. Results show that the proposed method can effectively improve the preferences of the recommender system and it is suitable for the sparsity data.

Suggested Citation

  • Junmei Feng & Xiaoyi Fengs & Ning Zhang & Jinye Peng, 2018. "An improved collaborative filtering method based on similarity," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-18, September.
  • Handle: RePEc:plo:pone00:0204003
    DOI: 10.1371/journal.pone.0204003
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204003
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0204003&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0204003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gediminas Adomavicius & Jingjing Zhang, 2016. "Classification, Ranking, and Top-K Stability of Recommendation Algorithms," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 129-147, February.
    2. Shuang-Bo Sun & Zhi-Heng Zhang & Xin-Ling Dong & Heng-Ru Zhang & Tong-Jun Li & Lin Zhang & Fan Min, 2017. "Integrating Triangle and Jaccard similarities for recommendation," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-16, August.
    3. Chong Ju Choi & Carla C. J. M. Millar & Caroline Y. L. Wong, 2005. "Knowledge and the State," Palgrave Macmillan Books, in: Knowledge Entanglements, chapter 0, pages 19-38, Palgrave Macmillan.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Latha, R., 2022. "Enhancing recommendation competence in nearest neighbour models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernd Heinrich & Marcus Hopf & Daniel Lohninger & Alexander Schiller & Michael Szubartowicz, 2021. "Data quality in recommender systems: the impact of completeness of item content data on prediction accuracy of recommender systems," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(2), pages 389-409, June.
    2. Fan, Zhi-Ping & Sun, Minghe, 2016. "A multi-kernel support tensor machine for classification with multitype multiway data and an application to cross-selling recommendationsAuthor-Name: Chen, Zhen-Yu," European Journal of Operational Research, Elsevier, vol. 255(1), pages 110-120.
    3. Mubbashir Ayub & Mustansar Ali Ghazanfar & Zahid Mehmood & Tanzila Saba & Riad Alharbey & Asmaa Mahdi Munshi & Mayda Abdullateef Alrige, 2019. "Modeling user rating preference behavior to improve the performance of the collaborative filtering based recommender systems," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-29, August.
    4. Oliver Hinz & Jochen Eckert, 2010. "The Impact of Search and Recommendation Systems on Sales in Electronic Commerce," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 2(2), pages 67-77, April.
    5. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    6. Lawrence Bunnell & Kweku-Muata Osei-Bryson & Victoria Y. Yoon, 0. "RecSys Issues Ontology: A Knowledge Classification of Issues for Recommender Systems Researchers," Information Systems Frontiers, Springer, vol. 0, pages 1-42.
    7. Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
    8. Joanna Sokolowska & Patrycja Sleboda, 2015. "The Inverse Relation Between Risks and Benefits: The Role of Affect and Expertise," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1252-1267, July.
    9. Donald R. Haurin & Stuart S. Rosenthal, 2009. "Language, Agglomeration and Hispanic Homeownership," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 37(2), pages 155-183, June.
    10. Jong Won Min, 2019. "The Influence of Stigma and Views on Mental Health Treatment Effectiveness on Service Use by Age and Ethnicity: Evidence From the CDC BRFSS 2007, 2009, and 2012," SAGE Open, , vol. 9(3), pages 21582440198, September.
    11. Zhan (Michael) Shi & T. S. Raghu, 2020. "An Economic Analysis of Product Recommendation in the Presence of Quality and Taste-Match Heterogeneity," Information Systems Research, INFORMS, vol. 31(2), pages 399-411, June.
    12. Voxi Amvilah & Simplice Anutechia Asongu & Antonio Andrés, 2014. "Globalization, Peace & Stability, Governance, and Knowledge Economy," AAYE Policy Research Working Paper Series 14_024, Association of African Young Economists, revised Dec 2014.
    13. Alwang, Jeffrey & Larochelle, Catherine & Barrera, Victor, 2017. "Farm Decision Making and Gender: Results from a Randomized Experiment in Ecuador," World Development, Elsevier, vol. 92(C), pages 117-129.
    14. Yanina Welp & Ferran Urgell & Eduard Aibar, 2007. "From Bureaucratic Administration to Network Administration? An Empirical Study on E-Government Focus on Catalonia," Public Organization Review, Springer, vol. 7(4), pages 299-316, December.
    15. Brent Hammer & Helen Vallianatos & Candace Nykiforuk & Laura Nieuwendyk, 2015. "Perceptions of healthy eating in four Alberta communities: a photovoice project," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(4), pages 649-662, December.
    16. Amine Dadoun & Michael Defoin-Platel & Thomas Fiig & Corinne Landra & Raphaël Troncy, 2021. "How recommender systems can transform airline offer construction and retailing," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 20(3), pages 301-315, June.
    17. Parag, Yael & Darby, Sarah, 2009. "Consumer-supplier-government triangular relations: Rethinking the UK policy path for carbon emissions reduction from the UK residential sector," Energy Policy, Elsevier, vol. 37(10), pages 3984-3992, October.
    18. Umberto Panniello & Michele Gorgoglione & Alexander Tuzhilin, 2016. "Research Note—In CARSs We Trust: How Context-Aware Recommendations Affect Customers’ Trust and Other Business Performance Measures of Recommender Systems," Information Systems Research, INFORMS, vol. 27(1), pages 182-196, March.
    19. Shiau, Wen-Lung & Dwivedi, Yogesh K. & Yang, Han Suan, 2017. "Co-citation and cluster analyses of extant literature on social networks," International Journal of Information Management, Elsevier, vol. 37(5), pages 390-399.
    20. Kim, Jae Kyeong & Kim, Hyea Kyeong & Oh, Hee Young & Ryu, Young U., 2010. "A group recommendation system for online communities," International Journal of Information Management, Elsevier, vol. 30(3), pages 212-219.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0204003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.