IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0218875.html
   My bibliography  Save this article

Turning conceptual systems maps into dynamic simulation models: An Australian case study for diabetes in pregnancy

Author

Listed:
  • Louise Freebairn
  • Jo-An Atkinson
  • Nathaniel D Osgood
  • Paul M Kelly
  • Geoff McDonnell
  • Lucie Rychetnik

Abstract

Background: System science approaches are increasingly used to explore complex public health problems. Quantitative methods, such as participatory dynamic simulation modelling, can mobilise knowledge to inform health policy decisions. However, the analytic and practical steps required to turn collaboratively developed, qualitative system maps into rigorous and policy-relevant quantified dynamic simulation models are not well described. This paper reports on the processes, interactions and decisions that occurred at the interface between modellers and end-user participants in an applied health sector case study focusing on diabetes in pregnancy. Methods: An analysis was conducted using qualitative data from a participatory dynamic simulation modelling case study in an Australian health policy setting. Recordings of participatory model development workshops and subsequent meetings were analysed and triangulated with field notes and other written records of discussions and decisions. Case study vignettes were collated to illustrate the deliberations and decisions made throughout the model development process. Results: The key analytic objectives and decision-making processes included: defining the model scope; analysing and refining the model structure to maximise local relevance and utility; reviewing and incorporating evidence to inform model parameters and assumptions; focusing the model on priority policy questions; communicating results and applying the models to policy processes. These stages did not occur sequentially; the model development was cyclical and iterative with decisions being re-visited and refined throughout the process. Storytelling was an effective strategy to both communicate and resolve concerns about the model logic and structure, and to communicate the outputs of the model to a broader audience. Conclusion: The in-depth analysis reported here examined the application of participatory modelling methods to move beyond qualitative conceptual mapping to the development of a rigorously quantified and policy relevant, complex dynamic simulation model. The analytic objectives and decision-making themes identified provide guidance for interpreting, understanding and reporting future participatory modelling projects and methods.

Suggested Citation

  • Louise Freebairn & Jo-An Atkinson & Nathaniel D Osgood & Paul M Kelly & Geoff McDonnell & Lucie Rychetnik, 2019. "Turning conceptual systems maps into dynamic simulation models: An Australian case study for diabetes in pregnancy," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-27, June.
  • Handle: RePEc:plo:pone00:0218875
    DOI: 10.1371/journal.pone.0218875
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218875
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0218875&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0218875?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sterman, J.D., 2006. "Learning from evidence in a complex world," American Journal of Public Health, American Public Health Association, vol. 96(3), pages 505-514.
    2. Gabriele Bammer, 2017. "Should we discipline interdisciplinarity?," Palgrave Communications, Palgrave Macmillan, vol. 3(1), pages 1-4, December.
    3. Nigel Gilbert & Petra Ahrweiler & Pete Barbrook-Johnson & Kavin Preethi Narasimhan & Helen Wilkinson, 2018. "Computational Modelling of Public Policy: Reflections on Practice," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 21(1), pages 1-14.
    4. Jonathan Karnon & James Stahl & Alan Brennan & J. Jaime Caro & Javier Mar & Jörgen Möller, 2012. "Modeling Using Discrete Event Simulation," Medical Decision Making, , vol. 32(5), pages 701-711, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulo Gonçalves & Paolo Ferrari & Luca Crivelli & Emiliano Albanese, 2023. "Model‐informed health system reorganization during emergencies," Production and Operations Management, Production and Operations Management Society, vol. 32(5), pages 1323-1344, May.
    2. Sridharan, Sanjeev & Jones, Bobby & Caudill, Barry & Nakaima, April, 2016. "Steps towards incorporating heterogeneities into program theory: A case study of a data-driven approach," Evaluation and Program Planning, Elsevier, vol. 58(C), pages 88-97.
    3. Wenjing Luo & Zhi Qiu & Yurika Yokoyama & Shengyuan Zheng, 2022. "Decision-Making Mechanism of Joint Activities for the Elderly and Children in Integrated Welfare Facilities: A Discussion Based on “Motivation–Constraint” Interaction Model," IJERPH, MDPI, vol. 19(16), pages 1-23, August.
    4. Kimberly M. Thompson & Radboud J. Duintjer Tebbens, 2006. "Retrospective Cost‐Effectiveness Analyses for Polio Vaccination in the United States," Risk Analysis, John Wiley & Sons, vol. 26(6), pages 1423-1440, December.
    5. Regina Veckalne & Tatjana Tambovceva, 2022. "The Role of Digital Transformation in Education in Promoting Sustainable Development," Virtual Economics, The London Academy of Science and Business, vol. 5(4), pages 65-86, December.
    6. repec:mpr:mprres:6558 is not listed on IDEAS
    7. Noeldeke, Beatrice & Winter, Etti & Ntawuhiganayo, Elisée Bahati, 2022. "Representing human decision-making in agent-based simulation models: Agroforestry adoption in rural Rwanda," Ecological Economics, Elsevier, vol. 200(C).
    8. Anja Bauer & Leo Capari & Daniela Fuchs & Titus Udrea, 2023. "Diversification, integration, and opening: developments in modelling for policy," Science and Public Policy, Oxford University Press, vol. 50(6), pages 977-987.
    9. Margaret Hargreaves & Diane Paulsell, 2009. "Evaluating Systems Change Efforts to Support Evidence-Based Home Visiting: Concepts and Methods," Mathematica Policy Research Reports c24fc47e9c744b52a00e2137c, Mathematica Policy Research.
    10. Stefan Scholz & Thomas Mittendorf, 2014. "Modeling rheumatoid arthritis using different techniques - a review of model construction and results," Health Economics Review, Springer, vol. 4(1), pages 1-16, December.
    11. Cyrille Rigolot, 2020. "Transdisciplinarity as a discipline and a way of being: complementarities and creative tensions," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-5, December.
    12. Xiuxian Wang & Na Geng & Jianxin Qiu & Zhibin Jiang & Liping Zhou, 2020. "Markov model and meta-heuristics combined method for cost-effectiveness analysis," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 213-235, March.
    13. Yang, Y. & Lin, J. & Liu, G. & Zhou, L., 2021. "The behavioural causes of bullwhip effect in supply chains: A systematic literature review," International Journal of Production Economics, Elsevier, vol. 236(C).
    14. Brice Dattée & James Barlow, 2017. "Multilevel Organizational Adaptation: Scale Invariance in the Scottish Healthcare System," Organization Science, INFORMS, vol. 28(2), pages 301-319, April.
    15. Miguel Ortiz-Barrios & Juan-José Alfaro-Saiz, 2020. "An integrated approach for designing in-time and economically sustainable emergency care networks: A case study in the public sector," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-28, June.
    16. van Ackere, Ann & Schulz, Peter J., 2020. "Explaining vaccination decisions: A system dynamics model of the interaction between epidemiological and behavioural factors," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    17. Matthew R Behrend & María-Gloria Basáñez & Jonathan I D Hamley & Travis C Porco & Wilma A Stolk & Martin Walker & Sake J de Vlas & for the NTD Modelling Consortium, 2020. "Modelling for policy: The five principles of the Neglected Tropical Diseases Modelling Consortium," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(4), pages 1-17, April.
    18. Cyrille Rigolot, 2021. "Organizing and better understanding transdisciplinarity in the context of artificial intelligence expansion: a crucial role for the new alliance between economics and engineering," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 48(4), pages 615-620, December.
    19. de Moura, Fernanda Senra & Barbrook-Johnson, Peter, 2022. "Using data-driven systems mapping to contextualise complexity economics insights," INET Oxford Working Papers 2022-27, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    20. Kwamina Ewur Banson & Daniel Kwasi Asare & Fidelis Doodaa Dery & Kwadwo Boakye & Akudugu Boniface & Moses Asamoah & Lourees Esi Awotwe, 2020. "Impact of Fall Armyworm on Farmer’s Maize: Systemic Approach," Systemic Practice and Action Research, Springer, vol. 33(2), pages 237-264, April.
    21. Simone A. Huygens & Isaac Corro Ramos & Carlijn V. C. Bouten & Jolanda Kluin & Shih Ting Chiu & Gary L. Grunkemeier & Johanna J. M. Takkenberg & Maureen P. M. H. Rutten-van Mölken, 2020. "Early cost-utility analysis of tissue-engineered heart valves compared to bioprostheses in the aortic position in elderly patients," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 21(4), pages 557-572, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0218875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.