IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0218454.html
   My bibliography  Save this article

Scaling laws in geo-located Twitter data

Author

Listed:
  • Rudy Arthur
  • Hywel T P Williams

Abstract

Twitter has become an important platform for geo-spatial analyses, providing high-volume spatial data on a wide variety of social processes. Understanding the relationship between population density and Twitter activity is therefore of key importance. This study reports a systematic relationship between population density and Twitter use. Number of tweets, number of users and population per unit area are related by power law functions with exponents greater than one. These relations are consistent with each other and hold across a range of spatial scales. This implies that population density can accurately predict Twitter activity, but importantly, it also implies that correct predictions are not given by a naive linear scaling analysis. The observed super-linearity has implications for any spatial analyses performed with Twitter data and is important for understanding the relationship between Twitter use and demographics. For example, the robustness of this relationship means that we can identify ‘anomalous’ geographic areas that deviate from the observed trend, identifying several towns with high/low usage relative to expectation; using the scaling relationship we are able to show that these anomalies are not caused by age structure, as has been previously proposed. Proper consideration of this scaling relationship will improve robustness in future geo-spatial studies using Twitter.

Suggested Citation

  • Rudy Arthur & Hywel T P Williams, 2019. "Scaling laws in geo-located Twitter data," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-20, July.
  • Handle: RePEc:plo:pone00:0218454
    DOI: 10.1371/journal.pone.0218454
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218454
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0218454&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0218454?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luis Bettencourt & Geoffrey West, 2010. "A unified theory of urban living," Nature, Nature, vol. 467(7318), pages 912-913, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiyi Zhang & Panayiota Tsatsou & Lauren McLaren & Yimei Zhu, 2024. "Comparing location-specific and location-open social media data: methodological lessons from a study of blaming of minorities on Twitter during the COVID-19 pandemic," Journal of Computational Social Science, Springer, vol. 7(3), pages 2457-2479, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    2. Alves, L.G.A. & Ribeiro, H.V. & Lenzi, E.K. & Mendes, R.S., 2014. "Empirical analysis on the connection between power-law distributions and allometries for urban indicators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 175-182.
    3. Huang, Siyu & Shi, Yi & Chen, Qinghua & Li, Xiaomeng, 2022. "The growth path of high-tech industries: Statistical laws and evolution demands," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    4. Yang Yang & Chunlu Liu & Baizhen Li & Jilong Zhao, 2022. "Modelling and Forecast of Future Growth for Shandong’s Small Industrial Towns: A Scenario-Based Interactive Approach," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    5. He, Yifan & Zhao, Chen & Zeng, An, 2022. "Ranking locations in a city via the collective home-work relations in human mobility data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    6. Massimo Palme & Agnese Salvati, 2020. "Sustainability and Urban Metabolism," Sustainability, MDPI, vol. 12(1), pages 1-3, January.
    7. Joao Meirelles & Camilo Rodrigues Neto & Fernando Fagundes Ferreira & Fabiano Lemes Ribeiro & Claudia Rebeca Binder, 2018. "Evolution of urban scaling: Evidence from Brazil," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-15, October.
    8. Daan Francois Toerien, 2022. "Linking Entrepreneurial Activities and Community Prosperity/Poverty in United States Counties: Use of the Enterprise Dependency Index," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    9. A. Haven Kiers & Billy Krimmel & Caroline Larsen-Bircher & Kate Hayes & Ash Zemenick & Julia Michaels, 2022. "Different Jargon, Same Goals: Collaborations between Landscape Architects and Ecologists to Maximize Biodiversity in Urban Lawn Conversions," Land, MDPI, vol. 11(10), pages 1-18, September.
    10. David Levinson & David Giacomin & Antony Badsey-Ellis, 2014. "Accessibility and the choice of network investments in the London Underground," Working Papers 000124, University of Minnesota: Nexus Research Group.
    11. Varga, Levente & Tóth, Géza & Néda, Zoltán, 2017. "An improved radiation model and its applicability for understanding commuting patterns in Hungary," MPRA Paper 76806, University Library of Munich, Germany.
    12. Brinkley, Catherine & Raj, Subhashni, 2022. "Perfusion and urban thickness: The shape of cities," Land Use Policy, Elsevier, vol. 115(C).
    13. Sebastián Bustos & Charles Gomez & Ricardo Hausmann & César A Hidalgo, 2012. "The Dynamics of Nestedness Predicts the Evolution of Industrial Ecosystems," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-8, November.
    14. Peña, Guillermo & Puente-Ajovín, Miguel & Ramos, Arturo & Sanz-Gracia, Fernando, 2022. "Log-growth rates of CO2: An empirical analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    15. Ermal Shpuza, 2017. "Relative size measures of urban form based on allometric subtraction," Environment and Planning B, , vol. 44(1), pages 141-159, January.
    16. Xu, Gang & Xu, Zhibang & Gu, Yanyan & Lei, Weiqian & Pan, Yupiao & Liu, Jie & Jiao, Limin, 2020. "Scaling laws in intra-urban systems and over time at the district level in Shanghai, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    17. Ben Derudder, 2021. "Network Analysis of ‘Urban Systems’: Potential, Challenges, and Pitfalls," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 112(4), pages 404-420, September.
    18. Yves Bettignies & Joao Meirelles & Gabriela Fernandez & Franziska Meinherz & Paul Hoekman & Philippe Bouillard & Aristide Athanassiadis, 2019. "The Scale-Dependent Behaviour of Cities: A Cross-Cities Multiscale Driver Analysis of Urban Energy Use," Sustainability, MDPI, vol. 11(12), pages 1-20, June.
    19. Anna Martyka & Dorota Jopek & Izabela Skrzypczak, 2022. "Analysis of the Sustainable Development Index in the Communes of the Podkarpackie Voivodeship: A Polish Case Study," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    20. Christian Düben & Melanie Krause, 2021. "Population, light, and the size distribution of cities," Journal of Regional Science, Wiley Blackwell, vol. 61(1), pages 189-211, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0218454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.