IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0216999.html
   My bibliography  Save this article

Resonant model—A new paradigm for modeling an action potential of biological cells

Author

Listed:
  • Sucheta Sehgal
  • Nitish D Patel
  • Avinash Malik
  • Partha S Roop
  • Mark L Trew

Abstract

Organ level simulation of bioelectric behavior in the body benefits from flexible and efficient models of cellular membrane potential. These computational organ and cell models can be used to study the impact of pharmaceutical drugs, test hypotheses, assess risk and for closed-loop validation of medical devices. To move closer to the real-time requirements of this modeling a new flexible Fourier based general membrane potential model, called as a Resonant model, is developed that is computationally inexpensive. The new model accurately reproduces non-linear potential morphologies for a variety of cell types. Specifically, the method is used to model human and rabbit sinoatrial node, human ventricular myocyte and squid giant axon electrophysiology. The Resonant models are validated with experimental data and with other published models. Dynamic changes in biological conditions are modeled with changing model coefficients and this approach enables ionic channel alterations to be captured. The Resonant model is used to simulate entrainment between competing sinoatrial node cells. These models can be easily implemented in low-cost digital hardware and an alternative, resource-efficient implementations of sine and cosine functions are presented and it is shown that a Fourier term is produced with two additions and a binary shift.

Suggested Citation

  • Sucheta Sehgal & Nitish D Patel & Avinash Malik & Partha S Roop & Mark L Trew, 2019. "Resonant model—A new paradigm for modeling an action potential of biological cells," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-25, May.
  • Handle: RePEc:plo:pone00:0216999
    DOI: 10.1371/journal.pone.0216999
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216999
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0216999&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0216999?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Willemijn Groenendaal & Francis A Ortega & Armen R Kherlopian & Andrew C Zygmunt & Trine Krogh-Madsen & David J Christini, 2015. "Cell-Specific Cardiac Electrophysiology Models," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-22, April.
    2. Daniel M Lombardo & Flavio H Fenton & Sanjiv M Narayan & Wouter-Jan Rappel, 2016. "Comparison of Detailed and Simplified Models of Human Atrial Myocytes to Recapitulate Patient Specific Properties," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-15, August.
    3. Meron Gurkiewicz & Alon Korngreen, 2007. "A Numerical Approach to Ion Channel Modelling Using Whole-Cell Voltage-Clamp Recordings and a Genetic Algorithm," PLOS Computational Biology, Public Library of Science, vol. 3(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitrii Smirnov & Andrey Pikunov & Roman Syunyaev & Ruslan Deviatiiarov & Oleg Gusev & Kedar Aras & Anna Gams & Aaron Koppel & Igor R Efimov, 2020. "Genetic algorithm-based personalized models of human cardiac action potential," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-31, May.
    2. August George & Paola Bisignano & John M Rosenberg & Michael Grabe & Daniel M Zuckerman, 2020. "A systems-biology approach to molecular machines: Exploration of alternative transporter mechanisms," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-21, July.
    3. Violeta Monasterio & Joel Castro-Mur & Jesús Carro, 2018. "DENIS: Solving cardiac electrophysiological simulations with volunteer computing," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-12, October.
    4. Wei Wang & Jie Luo & Panpan Hou & Yimei Yang & Feng Xiao & Ming Yuchi & Anlian Qu & Luyang Wang & Jiuping Ding, 2013. "Native Gating Behavior of Ion Channels in Neurons with Null-Deviation Modeling," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-10, October.
    5. Wei Wang & Feng Xiao & Xuhui Zeng & Jing Yao & Ming Yuchi & Jiuping Ding, 2012. "Optimal Estimation of Ion-Channel Kinetics from Macroscopic Currents," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-12, April.
    6. Gustavo Montes Novaes & Enrique Alvarez-Lacalle & Sergio Alonso Muñoz & Rodrigo Weber dos Santos, 2022. "An ensemble of parameters from a robust Markov-based model reproduces L-type calcium currents from different human cardiac myocytes," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-26, April.
    7. Kathryn E Mangold & Wei Wang & Eric K Johnson & Druv Bhagavan & Jonathan D Moreno & Jeanne M Nerbonne & Jonathan R Silva, 2021. "Identification of structures for ion channel kinetic models," PLOS Computational Biology, Public Library of Science, vol. 17(8), pages 1-26, August.
    8. Willemijn Groenendaal & Francis A Ortega & Armen R Kherlopian & Andrew C Zygmunt & Trine Krogh-Madsen & David J Christini, 2015. "Cell-Specific Cardiac Electrophysiology Models," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-22, April.
    9. Tanmay A Gokhale & Jong M Kim & Robert D Kirkton & Nenad Bursac & Craig S Henriquez, 2017. "Modeling an Excitable Biosynthetic Tissue with Inherent Variability for Paired Computational-Experimental Studies," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-26, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0216999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.