Genetic algorithm-based personalized models of human cardiac action potential
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0231695
Download full text from publisher
References listed on IDEAS
- Willemijn Groenendaal & Francis A Ortega & Armen R Kherlopian & Andrew C Zygmunt & Trine Krogh-Madsen & David J Christini, 2015. "Cell-Specific Cardiac Electrophysiology Models," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-22, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- William A. Ramírez & Alessio Gizzi & Kevin L. Sack & Simonetta Filippi & Julius M. Guccione & Daniel E. Hurtado, 2020. "On the Role of Ionic Modeling on the Signature of Cardiac Arrhythmias for Healthy and Diseased Hearts," Mathematics, MDPI, vol. 8(12), pages 1-19, December.
- Timur Gamilov & Philipp Kopylov & Maria Serova & Roman Syunyaev & Andrey Pikunov & Sofya Belova & Fuyou Liang & Jordi Alastruey & Sergey Simakov, 2020. "Computational Analysis of Coronary Blood Flow: The Role of Asynchronous Pacing and Arrhythmias," Mathematics, MDPI, vol. 8(8), pages 1-16, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Violeta Monasterio & Joel Castro-Mur & Jesús Carro, 2018. "DENIS: Solving cardiac electrophysiological simulations with volunteer computing," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-12, October.
- Gustavo Montes Novaes & Enrique Alvarez-Lacalle & Sergio Alonso Muñoz & Rodrigo Weber dos Santos, 2022. "An ensemble of parameters from a robust Markov-based model reproduces L-type calcium currents from different human cardiac myocytes," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-26, April.
- Tanmay A Gokhale & Jong M Kim & Robert D Kirkton & Nenad Bursac & Craig S Henriquez, 2017. "Modeling an Excitable Biosynthetic Tissue with Inherent Variability for Paired Computational-Experimental Studies," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-26, January.
- Sucheta Sehgal & Nitish D Patel & Avinash Malik & Partha S Roop & Mark L Trew, 2019. "Resonant model—A new paradigm for modeling an action potential of biological cells," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-25, May.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0231695. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.