IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0030169.html
   My bibliography  Save this article

A Numerical Approach to Ion Channel Modelling Using Whole-Cell Voltage-Clamp Recordings and a Genetic Algorithm

Author

Listed:
  • Meron Gurkiewicz
  • Alon Korngreen

Abstract

The activity of trans-membrane proteins such as ion channels is the essence of neuronal transmission. The currently most accurate method for determining ion channel kinetic mechanisms is single-channel recording and analysis. Yet, the limitations and complexities in interpreting single-channel recordings discourage many physiologists from using them. Here we show that a genetic search algorithm in combination with a gradient descent algorithm can be used to fit whole-cell voltage-clamp data to kinetic models with a high degree of accuracy. Previously, ion channel stimulation traces were analyzed one at a time, the results of these analyses being combined to produce a picture of channel kinetics. Here the entire set of traces from all stimulation protocols are analysed simultaneously. The algorithm was initially tested on simulated current traces produced by several Hodgkin-Huxley–like and Markov chain models of voltage-gated potassium and sodium channels. Currents were also produced by simulating levels of noise expected from actual patch recordings. Finally, the algorithm was used for finding the kinetic parameters of several voltage-gated sodium and potassium channels models by matching its results to data recorded from layer 5 pyramidal neurons of the rat cortex in the nucleated outside-out patch configuration. The minimization scheme gives electrophysiologists a tool for reproducing and simulating voltage-gated ion channel kinetics at the cellular level.: Voltage-gated ion channels affect neuronal integration of information. Some neurons express more than ten different types of voltage-gated ion channels, making information processing a highly convoluted process. Kinetic modelling of ion channels is an important method for unravelling the role of each channel type in neuronal function. However, the most commonly used analysis techniques suffer from shortcomings that limit the ability of researchers to rapidly produce physiologically relevant models of voltage-gated ion channels and of neuronal physiology. We show that conjugating a stochastic search algorithm with ionic currents measured using multiple voltage-clamp protocols enables the semi-automatic production of models of voltage-gated ion channels. Once fully automated, this approach may be used for high throughput analysis of voltage-gated currents. This in turn will greatly shorten the time required for building models of neuronal physiology to facilitate our understanding of neuronal behaviour.

Suggested Citation

  • Meron Gurkiewicz & Alon Korngreen, 2007. "A Numerical Approach to Ion Channel Modelling Using Whole-Cell Voltage-Clamp Recordings and a Genetic Algorithm," PLOS Computational Biology, Public Library of Science, vol. 3(8), pages 1-15, August.
  • Handle: RePEc:plo:pcbi00:0030169
    DOI: 10.1371/journal.pcbi.0030169
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030169
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0030169&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0030169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert C Cannon & Giampaolo D'Alessandro, 2006. "The Ion Channel Inverse Problem: Neuroinformatics Meets Biophysics," PLOS Computational Biology, Public Library of Science, vol. 2(8), pages 1-8, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Willemijn Groenendaal & Francis A Ortega & Armen R Kherlopian & Andrew C Zygmunt & Trine Krogh-Madsen & David J Christini, 2015. "Cell-Specific Cardiac Electrophysiology Models," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-22, April.
    2. Wei Wang & Jie Luo & Panpan Hou & Yimei Yang & Feng Xiao & Ming Yuchi & Anlian Qu & Luyang Wang & Jiuping Ding, 2013. "Native Gating Behavior of Ion Channels in Neurons with Null-Deviation Modeling," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-10, October.
    3. Wei Wang & Feng Xiao & Xuhui Zeng & Jing Yao & Ming Yuchi & Jiuping Ding, 2012. "Optimal Estimation of Ion-Channel Kinetics from Macroscopic Currents," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-12, April.
    4. August George & Paola Bisignano & John M Rosenberg & Michael Grabe & Daniel M Zuckerman, 2020. "A systems-biology approach to molecular machines: Exploration of alternative transporter mechanisms," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-21, July.
    5. Sucheta Sehgal & Nitish D Patel & Avinash Malik & Partha S Roop & Mark L Trew, 2019. "Resonant model—A new paradigm for modeling an action potential of biological cells," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-25, May.
    6. Kathryn E Mangold & Wei Wang & Eric K Johnson & Druv Bhagavan & Jonathan D Moreno & Jeanne M Nerbonne & Jonathan R Silva, 2021. "Identification of structures for ion channel kinetic models," PLOS Computational Biology, Public Library of Science, vol. 17(8), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pietro Balbi & Paolo Massobrio & Jeanette Hellgren Kotaleski, 2017. "A single Markov-type kinetic model accounting for the macroscopic currents of all human voltage-gated sodium channel isoforms," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-29, September.
    2. Andrey R Stepanyuk & Anya L Borisyuk & Pavel V Belan, 2011. "Efficient Maximum Likelihood Estimation of Kinetic Rate Constants from Macroscopic Currents," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0030169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.