IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0216906.html
   My bibliography  Save this article

An improved adaptive memetic differential evolution optimization algorithms for data clustering problems

Author

Listed:
  • Hossam M J Mustafa
  • Masri Ayob
  • Mohd Zakree Ahmad Nazri
  • Graham Kendall

Abstract

The performance of data clustering algorithms is mainly dependent on their ability to balance between the exploration and exploitation of the search process. Although some data clustering algorithms have achieved reasonable quality solutions for some datasets, their performance across real-life datasets could be improved. This paper proposes an adaptive memetic differential evolution optimisation algorithm (AMADE) for addressing data clustering problems. The memetic algorithm (MA) employs an adaptive differential evolution (DE) mutation strategy, which can offer superior mutation performance across many combinatorial and continuous problem domains. By hybridising an adaptive DE mutation operator with the MA, we propose that it can lead to faster convergence and better balance the exploration and exploitation of the search. We would also expect that the performance of AMADE to be better than MA and DE if executed separately. Our experimental results, based on several real-life benchmark datasets, shows that AMADE outperformed other compared clustering algorithms when compared using statistical analysis. We conclude that the hybridisation of MA and the adaptive DE is a suitable approach for addressing data clustering problems and can improve the balance between global exploration and local exploitation of the optimisation algorithm.

Suggested Citation

  • Hossam M J Mustafa & Masri Ayob & Mohd Zakree Ahmad Nazri & Graham Kendall, 2019. "An improved adaptive memetic differential evolution optimization algorithms for data clustering problems," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-28, May.
  • Handle: RePEc:plo:pone00:0216906
    DOI: 10.1371/journal.pone.0216906
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216906
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0216906&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0216906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jin Deng & Ling Wang & Sheng-yao Wang & Xiao-long Zheng, 2016. "A competitive memetic algorithm for the distributed two-stage assembly flow-shop scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(12), pages 3561-3577, June.
    2. Mayra Z Rodriguez & Cesar H Comin & Dalcimar Casanova & Odemir M Bruno & Diego R Amancio & Luciano da F Costa & Francisco A Rodrigues, 2019. "Clustering algorithms: A comparative approach," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-34, January.
    3. Xinchun Cui & Yuying Niu & Xiangwei Zheng & Yingshuai Han, 2018. "An optimized digital watermarking algorithm in wavelet domain based on differential evolution for color image," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-15, May.
    4. Li, Yang & Li, Yahui & Li, Guoqing & Zhao, Dongbo & Chen, Chen, 2018. "Two-stage multi-objective OPF for AC/DC grids with VSC-HVDC: Incorporating decisions analysis into optimization process," Energy, Elsevier, vol. 147(C), pages 286-296.
    5. Yaling Zhang & Na Liu & Shangping Wang, 2018. "A differential privacy protecting K-means clustering algorithm based on contour coefficients," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-15, November.
    6. Rahab M Ramadan & Safa M Gasser & Mohamed S El-Mahallawy & Karim Hammad & Ahmed M El Bakly, 2018. "A memetic optimization algorithm for multi-constrained multicast routing in ad hoc networks," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-17, March.
    7. Li, Yang & Wang, Jinlong & Zhao, Dongbo & Li, Guoqing & Chen, Chen, 2018. "A two-stage approach for combined heat and power economic emission dispatch: Combining multi-objective optimization with integrated decision making," Energy, Elsevier, vol. 162(C), pages 237-254.
    8. Dariush Khezrimotlagh & Yao Chen, 2018. "The Optimization Approach," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 107-134, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossam M J Mustafa & Masri Ayob & Dheeb Albashish & Sawsan Abu-Taleb, 2020. "Solving text clustering problem using a memetic differential evolution algorithm," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yang & Yang, Zhen & Li, Guoqing & Mu, Yunfei & Zhao, Dongbo & Chen, Chen & Shen, Bo, 2018. "Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing," Applied Energy, Elsevier, vol. 232(C), pages 54-68.
    2. Henrique Pires Corrêa & Rafael Ribeiro de Carvalho Vaz & Flávio Henrique Teles Vieira & Sérgio Granato de Araújo, 2019. "Reliability Based Genetic Algorithm Applied to Allocation of Fiber Optics Links for Power Grid Automation," Energies, MDPI, vol. 12(11), pages 1-26, May.
    3. Simon Pezzutto & Giulio Quaglini & Andrea Zambito & Antonio Novelli & Philippe Riviere & Lukas Kranzl & Eric Wilczynski, 2022. "Potential Evolution of the Cooling Market in the EU27+UK: An Outlook until 2030," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
    4. Jamin Koo & Soung-Ryong Oh & Yeo-Ul Choi & Jae-Hoon Jung & Kyungtae Park, 2019. "Optimization of an Organic Rankine Cycle System for an LNG-Powered Ship," Energies, MDPI, vol. 12(10), pages 1-17, May.
    5. Shitu Zhang & Zhixun Zhu & Yang Li, 2021. "A Critical Review of Data-Driven Transient Stability Assessment of Power Systems: Principles, Prospects and Challenges," Energies, MDPI, vol. 14(21), pages 1-13, November.
    6. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    7. Donovin D. Lewis & Aron Patrick & Evan S. Jones & Rosemary E. Alden & Abdullah Al Hadi & Malcolm D. McCulloch & Dan M. Ionel, 2023. "Decarbonization Analysis for Thermal Generation and Regionally Integrated Large-Scale Renewables Based on Minutely Optimal Dispatch with a Kentucky Case Study," Energies, MDPI, vol. 16(4), pages 1-23, February.
    8. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    9. Kumar Jadoun, Vinay & Rahul Prashanth, G & Suhas Joshi, Siddharth & Narayanan, K. & Malik, Hasmat & García Márquez, Fausto Pedro, 2022. "Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm," Applied Energy, Elsevier, vol. 315(C).
    10. Zhou, Xu & Ma, Zhongjing & Zou, Suli & Zhang, Jinhui, 2022. "Consensus-based distributed economic dispatch for Multi Micro Energy Grid systems under coupled carbon emissions," Applied Energy, Elsevier, vol. 324(C).
    11. Wang, Jiawei & You, Shi & Zong, Yi & Træholt, Chresten & Dong, Zhao Yang & Zhou, You, 2019. "Flexibility of combined heat and power plants: A review of technologies and operation strategies," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Xu Chen & Shuai Fang & Kangji Li, 2023. "Reinforcement-Learning-Based Multi-Objective Differential Evolution Algorithm for Large-Scale Combined Heat and Power Economic Emission Dispatch," Energies, MDPI, vol. 16(9), pages 1-23, April.
    13. Shaheen, Abdullah M. & El-Sehiemy, Ragab A. & Elattar, Ehab & Ginidi, Ahmed R., 2022. "An Amalgamated Heap and Jellyfish Optimizer for economic dispatch in Combined heat and power systems including N-1 Unit outages," Energy, Elsevier, vol. 246(C).
    14. Muhammad Faisal Shehzad & Mainak Dan & Valerio Mariani & Seshadhri Srinivasan & Davide Liuzza & Carmine Mongiello & Roberto Saraceno & Luigi Glielmo, 2021. "A Heuristic Algorithm for Combined Heat and Power System Operation Management," Energies, MDPI, vol. 14(6), pages 1-22, March.
    15. Li, Yang & Wang, Ruinong & Li, Yuanzheng & Zhang, Meng & Long, Chao, 2023. "Wind power forecasting considering data privacy protection: A federated deep reinforcement learning approach," Applied Energy, Elsevier, vol. 329(C).
    16. Li, Yang & Han, Meng & Shahidehpour, Mohammad & Li, Jiazheng & Long, Chao, 2023. "Data-driven distributionally robust scheduling of community integrated energy systems with uncertain renewable generations considering integrated demand response," Applied Energy, Elsevier, vol. 335(C).
    17. Ali Sulaiman Alsagri & Abdulrahman A. Alrobaian, 2022. "Optimization of Combined Heat and Power Systems by Meta-Heuristic Algorithms: An Overview," Energies, MDPI, vol. 15(16), pages 1-34, August.
    18. Sen Liu & Wei Yu & Ling Liu & Yanan Hu, 2019. "Variable weights theory and its application to multi-attribute group decision making with intuitionistic fuzzy numbers on determining decision maker’s weights," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-21, March.
    19. Zhou, Yuekuan, 2023. "Sustainable energy sharing districts with electrochemical battery degradation in design, planning, operation and multi-objective optimisation," Renewable Energy, Elsevier, vol. 202(C), pages 1324-1341.
    20. Sayantan Mitra & Sriparna Saha, 2019. "A multiobjective multi-view cluster ensemble technique: Application in patient subclassification," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-30, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0216906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.