IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0216904.html
   My bibliography  Save this article

A multiobjective multi-view cluster ensemble technique: Application in patient subclassification

Author

Listed:
  • Sayantan Mitra
  • Sriparna Saha

Abstract

Recent high throughput omics technology has been used to assemble large biomedical omics datasets. Clustering of single omics data has proven invaluable in biomedical research. For the task of patient sub-classification, all the available omics data should be utilized combinedly rather than treating them individually. Clustering of multi-omics datasets has the potential to reveal deep insights. Here, we propose a late integration based multiobjective multi-view clustering algorithm which uses a special perturbation operator. Initially, a large number of diverse clustering solutions (called base partitionings) are generated for each omic dataset using four clustering algorithms, viz., k means, complete linkage, spectral and fast search clustering. These base partitionings of multi-omic datasets are suitably combined using a special perturbation operator. The perturbation operator uses an ensemble technique to generate new solutions from the base partitionings. The optimal combination of multiple partitioning solutions across different views is determined after optimizing the objective functions, namely conn-XB, for checking the quality of partitionings for different views, and agreement index, for checking agreement between the views. The search capability of a multiobjective simulated annealing approach, namely AMOSA is used for this purpose. Lastly, the non-dominated solutions of the different views are combined based on similarity to generate a single set of non-dominated solutions. The proposed algorithm is evaluated on 13 multi-view cancer datasets. An elaborated comparative study with several baseline methods and five state-of-the-art models is performed to show the effectiveness of the algorithm.

Suggested Citation

  • Sayantan Mitra & Sriparna Saha, 2019. "A multiobjective multi-view cluster ensemble technique: Application in patient subclassification," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-30, May.
  • Handle: RePEc:plo:pone00:0216904
    DOI: 10.1371/journal.pone.0216904
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216904
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0216904&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0216904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mario Villalobos-Arias & Carlos Coello & Onésimo Hernández-Lerma, 2006. "Asymptotic convergence of a simulated annealing algorithm for multiobjective optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(2), pages 353-362, October.
    2. Li, Yang & Wang, Jinlong & Zhao, Dongbo & Li, Guoqing & Chen, Chen, 2018. "A two-stage approach for combined heat and power economic emission dispatch: Combining multi-objective optimization with integrated decision making," Energy, Elsevier, vol. 162(C), pages 237-254.
    3. Dariush Khezrimotlagh & Yao Chen, 2018. "The Optimization Approach," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 107-134, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Furqan Aziz & Taeeb Ahmad & Abdul Haseeb Malik & M Irfan Uddin & Shafiq Ahmad & Mohamed Sharaf, 2020. "Reversible data hiding techniques with high message embedding capacity in images," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    2. Donovin D. Lewis & Aron Patrick & Evan S. Jones & Rosemary E. Alden & Abdullah Al Hadi & Malcolm D. McCulloch & Dan M. Ionel, 2023. "Decarbonization Analysis for Thermal Generation and Regionally Integrated Large-Scale Renewables Based on Minutely Optimal Dispatch with a Kentucky Case Study," Energies, MDPI, vol. 16(4), pages 1-23, February.
    3. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    4. Kumar Jadoun, Vinay & Rahul Prashanth, G & Suhas Joshi, Siddharth & Narayanan, K. & Malik, Hasmat & García Márquez, Fausto Pedro, 2022. "Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm," Applied Energy, Elsevier, vol. 315(C).
    5. Zhou, Xu & Ma, Zhongjing & Zou, Suli & Zhang, Jinhui, 2022. "Consensus-based distributed economic dispatch for Multi Micro Energy Grid systems under coupled carbon emissions," Applied Energy, Elsevier, vol. 324(C).
    6. Wang, Jiawei & You, Shi & Zong, Yi & Træholt, Chresten & Dong, Zhao Yang & Zhou, You, 2019. "Flexibility of combined heat and power plants: A review of technologies and operation strategies," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Li, Yang & Yang, Zhen & Li, Guoqing & Mu, Yunfei & Zhao, Dongbo & Chen, Chen & Shen, Bo, 2018. "Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing," Applied Energy, Elsevier, vol. 232(C), pages 54-68.
    8. Xu Chen & Shuai Fang & Kangji Li, 2023. "Reinforcement-Learning-Based Multi-Objective Differential Evolution Algorithm for Large-Scale Combined Heat and Power Economic Emission Dispatch," Energies, MDPI, vol. 16(9), pages 1-23, April.
    9. Shaheen, Abdullah M. & El-Sehiemy, Ragab A. & Elattar, Ehab & Ginidi, Ahmed R., 2022. "An Amalgamated Heap and Jellyfish Optimizer for economic dispatch in Combined heat and power systems including N-1 Unit outages," Energy, Elsevier, vol. 246(C).
    10. Henrique Pires Corrêa & Rafael Ribeiro de Carvalho Vaz & Flávio Henrique Teles Vieira & Sérgio Granato de Araújo, 2019. "Reliability Based Genetic Algorithm Applied to Allocation of Fiber Optics Links for Power Grid Automation," Energies, MDPI, vol. 12(11), pages 1-26, May.
    11. Muhammad Faisal Shehzad & Mainak Dan & Valerio Mariani & Seshadhri Srinivasan & Davide Liuzza & Carmine Mongiello & Roberto Saraceno & Luigi Glielmo, 2021. "A Heuristic Algorithm for Combined Heat and Power System Operation Management," Energies, MDPI, vol. 14(6), pages 1-22, March.
    12. Simon Pezzutto & Giulio Quaglini & Andrea Zambito & Antonio Novelli & Philippe Riviere & Lukas Kranzl & Eric Wilczynski, 2022. "Potential Evolution of the Cooling Market in the EU27+UK: An Outlook until 2030," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
    13. Li, Yang & Wang, Ruinong & Li, Yuanzheng & Zhang, Meng & Long, Chao, 2023. "Wind power forecasting considering data privacy protection: A federated deep reinforcement learning approach," Applied Energy, Elsevier, vol. 329(C).
    14. Li, Yang & Han, Meng & Shahidehpour, Mohammad & Li, Jiazheng & Long, Chao, 2023. "Data-driven distributionally robust scheduling of community integrated energy systems with uncertain renewable generations considering integrated demand response," Applied Energy, Elsevier, vol. 335(C).
    15. Ali Sulaiman Alsagri & Abdulrahman A. Alrobaian, 2022. "Optimization of Combined Heat and Power Systems by Meta-Heuristic Algorithms: An Overview," Energies, MDPI, vol. 15(16), pages 1-34, August.
    16. Jamin Koo & Soung-Ryong Oh & Yeo-Ul Choi & Jae-Hoon Jung & Kyungtae Park, 2019. "Optimization of an Organic Rankine Cycle System for an LNG-Powered Ship," Energies, MDPI, vol. 12(10), pages 1-17, May.
    17. Sen Liu & Wei Yu & Ling Liu & Yanan Hu, 2019. "Variable weights theory and its application to multi-attribute group decision making with intuitionistic fuzzy numbers on determining decision maker’s weights," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-21, March.
    18. Zhou, Yuekuan, 2023. "Sustainable energy sharing districts with electrochemical battery degradation in design, planning, operation and multi-objective optimisation," Renewable Energy, Elsevier, vol. 202(C), pages 1324-1341.
    19. Jabari, Farkhondeh & Jabari, Hamid & Mohammadi-ivatloo, Behnam & Ghafouri, Jafar, 2019. "Optimal short-term coordination of water-heat-power nexus incorporating plug-in electric vehicles and real-time demand response programs," Energy, Elsevier, vol. 174(C), pages 708-723.
    20. Shitu Zhang & Zhixun Zhu & Yang Li, 2021. "A Critical Review of Data-Driven Transient Stability Assessment of Power Systems: Principles, Prospects and Challenges," Energies, MDPI, vol. 14(21), pages 1-13, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0216904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.