IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0209372.html
   My bibliography  Save this article

Multi-criteria decision support for planning and evaluation of performance of viral marketing campaigns in social networks

Author

Listed:
  • Artur Karczmarczyk
  • Jarosław Jankowski
  • Jarosław Wątróbski

Abstract

The current marketing landscape, apart from conventional approaches, consists of campaigns designed especially for launching information diffusion processes within online networks. Associated research is focused on information propagation models, campaign initialization strategies and factors affecting campaign dynamics. In terms of algorithms and performance evaluation, the final coverage represented by the fraction of activated nodes within a target network is usually used. It is not necessarily consistent with the real marketing campaigns using various characteristics and parameters related to coverage, costs, behavioral patterns and time factors for overall evaluation. This paper presents assumptions for a decision support system for multi-criteria campaign planning and evaluation with inputs from agent-based simulations. The results, which are delivered from a simulation model based on synthetic networks in a form of decision scenarios, are verified within a real network. Last, but not least, the study proposes a multi-objective campaign evaluation framework with several campaign evaluation metrics integrated. The results showed that the recommendations generated with the use of synthetic networks applied to real networks delivered results according to the decision makers’ expectation in terms of the used evaluation criteria. Apart from practical applications, the proposed multi-objective approach creates new evaluation possibilities for theoretical studies focused on information spreading processes within complex networks.

Suggested Citation

  • Artur Karczmarczyk & Jarosław Jankowski & Jarosław Wątróbski, 2018. "Multi-criteria decision support for planning and evaluation of performance of viral marketing campaigns in social networks," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-32, December.
  • Handle: RePEc:plo:pone00:0209372
    DOI: 10.1371/journal.pone.0209372
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209372
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0209372&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0209372?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hinz, Oliver & Skiera, Bernd & Barrot, Christian & Becker, Jan, 2011. "Seeding Strategies for Viral Marketing: An Empirical Comparison," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 56543, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rana Muhammad Zulqarnain & Xiao Long Xin & Imran Siddique & Waseem Asghar Khan & Mogtaba Ahmed Yousif, 2021. "TOPSIS Method Based on Correlation Coefficient under Pythagorean Fuzzy Soft Environment and Its Application towards Green Supply Chain Management," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    2. Paweł Ziemba, 2019. "Towards Strong Sustainability Management—A Generalized PROSA Method," Sustainability, MDPI, vol. 11(6), pages 1-29, March.
    3. Agnieszka Konys, 2019. "Green Supplier Selection Criteria: From a Literature Review to a Comprehensive Knowledge Base," Sustainability, MDPI, vol. 11(15), pages 1-41, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jialing (Catherine) Lin & Zhimin Zhou & Fucheng Zheng & Xinru Jiang & Ninh Nguyen, 2023. "How do hotel star ratings affect the relationship between environmental CSR and green word‐of‐mouth?," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(5), pages 2651-2663, September.
    2. Irina Heimbach & Oliver Hinz, 2018. "The Impact of Sharing Mechanism Design on Content Sharing in Online Social Networks," Information Systems Research, INFORMS, vol. 29(3), pages 592-611, September.
    3. Inyoung Chae & Andrew T. Stephen & Yakov Bart & Dai Yao, 2017. "Spillover Effects in Seeded Word-of-Mouth Marketing Campaigns," Marketing Science, INFORMS, vol. 36(1), pages 89-104, January.
    4. Daniel M. Ringel & Bernd Skiera, 2016. "Visualizing Asymmetric Competition Among More Than 1,000 Products Using Big Search Data," Marketing Science, INFORMS, vol. 35(3), pages 511-534, May.
    5. Jean J. Gabszewicz & Marco A. Marini & Skerdilajda Zanaj, 2023. "Random encounters and information diffusion about product quality," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 32(2), pages 348-376, April.
    6. Meyners, Jannik & Barrot, Christian & Becker, Jan U. & Bodapati, Anand V., 2017. "Reward-scrounging in customer referral programs," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 382-398.
    7. Tavasoli, Ali & Shakeri, Heman & Ardjmand, Ehsan & Young, William A., 2021. "Incentive rate determination in viral marketing," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1169-1187.
    8. Vincent Leon & S. Rasoul Etesami & Rakesh Nagi, 2022. "Limited-Trust in Diffusion of Competing Alternatives over Social Networks," Papers 2206.06318, arXiv.org, revised Oct 2023.
    9. Li, Pengdeng & Yang, Xiaofan & Yang, Lu-Xing & Xiong, Qingyu & Wu, Yingbo & Tang, Yuan Yan, 2018. "The modeling and analysis of the word-of-mouth marketing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 1-16.
    10. Alireza Mansouri & Fattaneh Taghiyareh, 2020. "Phase Transition in the Social Impact Model of Opinion Formation in Scale-Free Networks: The Social Power Effect," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(2), pages 1-3.
    11. Eelen, Jiska & Özturan, Peren & Verlegh, Peeter W.J., 2017. "The differential impact of brand loyalty on traditional and online word of mouth: The moderating roles of self-brand connection and the desire to help the brand," International Journal of Research in Marketing, Elsevier, vol. 34(4), pages 872-891.
    12. Hinz, Oliver & Schulze, Christian & Takac, Carsten, 2014. "New product adoption in social networks: Why direction matters," Journal of Business Research, Elsevier, vol. 67(1), pages 2836-2844.
    13. Thomas Fandrich & Christian Barrot & Jan U. Becker, 2014. "Deckungsbeitragsorientierte Steuerung von Targeting-Kampagnen," Schmalenbach Journal of Business Research, Springer, vol. 66(7), pages 601-624, November.
    14. Pescher, Christian & Spann, Martin, 2014. "Relevance of actors in bridging positions for product-related information diffusion," Journal of Business Research, Elsevier, vol. 67(8), pages 1630-1637.
    15. Xi Chen & Ralf van der Lans & Michael Trusov, 2021. "Efficient Estimation of Network Games of Incomplete Information: Application to Large Online Social Networks," Management Science, INFORMS, vol. 67(12), pages 7575-7598, December.
    16. Sarah Gelper & Ralf van der Lans & Gerrit van Bruggen, 2021. "Competition for Attention in Online Social Networks: Implications for Seeding Strategies," Management Science, INFORMS, vol. 67(2), pages 1026-1047, February.
    17. Wakefield, Lane T. & Bennett, Gregg, 2018. "Sports fan experience: Electronic word-of-mouth in ephemeral social media," Sport Management Review, Elsevier, vol. 21(2), pages 147-159.
    18. Eggers, Fabian & Risselada, Hans & Niemand, Thomas & Robledo, Sebastian, 2022. "Referral campaigns for software startups: The impact of network characteristics on product adoption," Journal of Business Research, Elsevier, vol. 145(C), pages 309-324.
    19. Alex Chin & Dean Eckles & Johan Ugander, 2022. "Evaluating Stochastic Seeding Strategies in Networks," Management Science, INFORMS, vol. 68(3), pages 1714-1736, March.
    20. Jiang, Zhong-Yuan & Zeng, Yong & Liu, Zhi-Hong & Ma, Jian-Feng, 2019. "Identifying critical nodes’ group in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 121-132.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0209372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.