IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0207509.html
   My bibliography  Save this article

Menopausal hormone therapy and the incidence of carpal tunnel syndrome in postmenopausal women: Findings from the Women’s Health Initiative

Author

Listed:
  • Tala Al-Rousan
  • Jeffrey A Sparks
  • Mary Pettinger
  • Rowan Chlebowski
  • JoAnn E Manson
  • Andrew M Kauntiz
  • Robert Wallace

Abstract

Importance: Carpal tunnel syndrome (CTS) is a common and debilitating condition that commonly affects postmenopausal women. Objective: To determine the effect of menopausal hormone therapy (HT) in healthy postmenopausal women on CTS risk. Design: We conducted a secondary analysis of the Women’s Health Initiative’s (WHI) HT trials linked to Medicare claims data. Separate intention-to-treat analyses were performed for the two trials; the conjugated equine estrogens alone (CEE alone) and the trial of CEE plus medroxyprogesterone acetate (MPA) trial. (ClinicalTrials.gov, NCT number): NCT00000611. Setting: Two randomized, double-blind, placebo-controlled trials conducted at 40 US clinical centers. Participants: The sample size included in the analysis was 16,053 community-dwelling women aged ≥65 years at study entry or those who later aged into Medicare eligibility, and who were enrolled in Medicare (including Part A and/or Part B coverage). Intervention: Women with hysterectomy were randomized to 0.625 mg/d of conjugated equine estrogens (CEE) or placebo (n = 8376). Women without hysterectomy were randomized to estrogen plus progestin (E+P), given as CEE plus 2.5 mg/d of medroxyprogesterone acetate (n = 14203). Main outcome(s): The primary outcome was incident CTS and the secondary outcome was therapeutic CTS procedure occurring during the intervention phases of the trials. Results: A total of 16,053 women were randomized in both trials. During mean follow up of 4.5 ± 2.8 years in the CEE trial (n = 6,833), there were 203 incident CTS cases in the intervention and 262 incident CTS cases in the placebo group (HR, 0.78; 95% CI, 0.65–0.94; P = 0.009). The CEE+MPA trial (n = 9,220) followed participants for a mean of 3.7 ± 2.3 years. There were 173 incident CTS cases in the intervention compared to 203 cases in the placebo group (HR, 0.80, 95% CI, 0.65–0.97; P = 0.027). Conclusions: These findings suggest a protective effect of menopausal HT on the incidence of CTS among postmenopausal women. A potential therapeutic role for other forms of estrogen therapy in the management of CTS warrants future research.

Suggested Citation

  • Tala Al-Rousan & Jeffrey A Sparks & Mary Pettinger & Rowan Chlebowski & JoAnn E Manson & Andrew M Kauntiz & Robert Wallace, 2018. "Menopausal hormone therapy and the incidence of carpal tunnel syndrome in postmenopausal women: Findings from the Women’s Health Initiative," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-15, December.
  • Handle: RePEc:plo:pone00:0207509
    DOI: 10.1371/journal.pone.0207509
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207509
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0207509&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0207509?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James M. Robins & Dianne M. Finkelstein, 2000. "Correcting for Noncompliance and Dependent Censoring in an AIDS Clinical Trial with Inverse Probability of Censoring Weighted (IPCW) Log-Rank Tests," Biometrics, The International Biometric Society, vol. 56(3), pages 779-788, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rachel Axelrod & Daniel Nevo, 2023. "A sensitivity analysis approach for the causal hazard ratio in randomized and observational studies," Biometrics, The International Biometric Society, vol. 79(3), pages 2743-2756, September.
    2. Yanyao Yi & Ting Ye & Menggang Yu & Jun Shao, 2020. "Cox regression with survival‐time‐dependent missing covariate values," Biometrics, The International Biometric Society, vol. 76(2), pages 460-471, June.
    3. Michael Rosenblum & Nicholas P. Jewell & Mark van der Laan & Stephen Shiboski & Ariane van der Straten & Nancy Padian, 2009. "Analysing direct effects in randomized trials with secondary interventions: an application to human immunodeficiency virus prevention trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(2), pages 443-465, April.
    4. Douglas E. Schaubel & Guanghui Wei, 2011. "Double Inverse-Weighted Estimation of Cumulative Treatment Effects Under Nonproportional Hazards and Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(1), pages 29-38, March.
    5. Romin Pajouheshnia & Noah A. Schuster & Rolf H. H. Groenwold & Frans H. Rutten & Karel G. M. Moons & Linda M. Peelen, 2020. "Accounting for time‐dependent treatment use when developing a prognostic model from observational data: A review of methods," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(1), pages 38-51, February.
    6. Greg DiRienzo, 2004. "Nonparametric Comparison of Two Survival-Time Distributions in the Presence of Dependent Censoring," Harvard University Biostatistics Working Paper Series 1000, Berkeley Electronic Press.
    7. A. G. DiRienzo, 2003. "Nonparametric Comparison of Two Survival-Time Distributions in the Presence of Dependent Censoring," Biometrics, The International Biometric Society, vol. 59(3), pages 497-504, September.
    8. Shuxi Zeng & Elizabeth C. Lange & Elizabeth A. Archie & Fernando A. Campos & Susan C. Alberts & Fan Li, 2023. "A Causal Mediation Model for Longitudinal Mediators and Survival Outcomes with an Application to Animal Behavior," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 197-218, June.
    9. Shen, Pao-sheng, 2009. "An inverse-probability-weighted approach to the estimation of distribution function with doubly censored data," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1269-1276, May.
    10. Chiu-Hsieh Hsu & Jeremy Taylor & Susan Murray, 2004. "Survival Analysis USing Auxiliary Variables Via Nonparametric Multiple Imputation," The University of Michigan Department of Biostatistics Working Paper Series 1026, Berkeley Electronic Press.
    11. Geneletti, Sara & Mason, Alexina & Best, Nicky, 2011. "Adjusting for selection effects in epidemiologic studies: why sensitivity analysis is the only “solution”," LSE Research Online Documents on Economics 31520, London School of Economics and Political Science, LSE Library.
    12. Shen, Pao-sheng, 2010. "Semiparametric estimation of survival function when data are subject to dependent censoring and left truncation," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 161-168, February.
    13. Susmita Datta & Jennifer Le-Rademacher & Somnath Datta, 2007. "Predicting Patient Survival from Microarray Data by Accelerated Failure Time Modeling Using Partial Least Squares and LASSO," Biometrics, The International Biometric Society, vol. 63(1), pages 259-271, March.
    14. Qingxia Chen & Fan Zhang & Ming-Hui Chen & Xiuyu Julie Cong, 2020. "Estimation of treatment effects and model diagnostics with two-way time-varying treatment switching: an application to a head and neck study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 685-707, October.
    15. Bella Vakulenko‐Lagun & Jing Qian & Sy Han Chiou & Nancy Wang & Rebecca A. Betensky, 2022. "Nonparametric estimation of the survival distribution under covariate‐induced dependent truncation," Biometrics, The International Biometric Society, vol. 78(4), pages 1390-1401, December.
    16. Andrew Ying & Eric J. Tchetgen Tchetgen, 2023. "Structural cumulative survival models for estimation of treatment effects accounting for treatment switching in randomized experiments," Biometrics, The International Biometric Society, vol. 79(3), pages 1597-1609, September.
    17. Jincheng Shen & Lu Wang & Jeremy M. G. Taylor, 2017. "Estimation of the optimal regime in treatment of prostate cancer recurrence from observational data using flexible weighting models," Biometrics, The International Biometric Society, vol. 73(2), pages 635-645, June.
    18. Pao-sheng Shen, 2010. "Nonparametric analysis of doubly truncated data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(5), pages 835-853, October.
    19. Yingchao Zhong & Douglas E. Schaubel, 2022. "Restricted mean survival time as a function of restriction time," Biometrics, The International Biometric Society, vol. 78(1), pages 192-201, March.
    20. Yayuan Zhu & Ziqi Chen & Jerald F. Lawless, 2022. "Semiparametric analysis of interval‐censored failure time data with outcome‐dependent observation schemes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 236-264, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0207509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.