IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v570y2021ics0378437121000674.html
   My bibliography  Save this article

How to predict crime — informatics-inspired approach from link prediction

Author

Listed:
  • Assouli, Nora
  • Benahmed, Khelifa
  • Gasbaoui, Brahim

Abstract

Many social complex networks are best modeled as a bipartite graph and they evolve during time, thus, predicting links that will appear in them have become highly relevant and critical. Link Prediction is a key direction in social complex network research refers to estimating the possibility of the existence of non-existent links between node pairs. In criminal networks, link prediction can provide a very efficient way in the discovery of missing or hidden links and the detection of the underground groups of criminals. Only few works address the bipartite case, though, despite its high practical interest and the specific challenges it raises. Likewise, most of prior algorithms of link prediction consider a threshold. However, it is difficult to set such a proper threshold in advance for a given dataset. Hence, in this paper, we propose a new method called Latent Link Prediction based on Internal and Local Links (LLPIL) for bipartite networks. LLPIL is based on new proposed topological metric named reliability that can reflect the likelihood of two nodes to be connected. We exploit the proposed model to identifying and preventing future criminal activities. Extensive simulations show that our proposed algorithm has high prediction accuracy and low time complexity.

Suggested Citation

  • Assouli, Nora & Benahmed, Khelifa & Gasbaoui, Brahim, 2021. "How to predict crime — informatics-inspired approach from link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
  • Handle: RePEc:eee:phsmap:v:570:y:2021:i:c:s0378437121000674
    DOI: 10.1016/j.physa.2021.125795
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121000674
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.125795?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shang, Ke-ke & Small, Michael & Yan, Wei-sheng, 2017. "Fitness networks for real world systems via modified preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 49-60.
    2. David Liben‐Nowell & Jon Kleinberg, 2007. "The link‐prediction problem for social networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(7), pages 1019-1031, May.
    3. Wu, Zhihao & Lin, Youfang & Zhao, Yiji & Yan, Hongyan, 2018. "Improving local clustering based top-L link prediction methods via asymmetric link clustering information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1859-1874.
    4. Machado Filho, A. & da Silva, M.F. & Zebende, G.F., 2014. "Autocorrelation and cross-correlation in time series of homicide and attempted homicide," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 12-19.
    5. Li, Ji-chao & Zhao, Dan-ling & Ge, Bing-Feng & Yang, Ke-Wei & Chen, Ying-Wu, 2018. "A link prediction method for heterogeneous networks based on BP neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 1-17.
    6. Liu, Jin-Hu & Zhu, Yu-Xiao & Zhou, Tao, 2016. "Improving personalized link prediction by hybrid diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 199-207.
    7. Wahid-Ul-Ashraf, Akanda & Budka, Marcin & Musial, Katarzyna, 2019. "How to predict social relationships — Physics-inspired approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1110-1129.
    8. Yao, Yabing & Zhang, Ruisheng & Yang, Fan & Tang, Jianxin & Yuan, Yongna & Hu, Rongjing, 2018. "Link prediction in complex networks based on the interactions among paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 52-67.
    9. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    10. Pei, Panpan & Liu, Bo & Jiao, Licheng, 2017. "Link prediction in complex networks based on an information allocation index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 1-11.
    11. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    12. Pech, Ratha & Hao, Dong & Lee, Yan-Li & Yuan, Ye & Zhou, Tao, 2019. "Link prediction via linear optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 528(C).
    13. Moradabadi, Behnaz & Meybodi, Mohammad Reza, 2016. "Link prediction based on temporal similarity metrics using continuous action set learning automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 361-373.
    14. Wu, Zhihao & Lin, Youfang & Wang, Jing & Gregory, Steve, 2016. "Link prediction with node clustering coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 1-8.
    15. Andalib, Azam & Babamir, Seyed Morteza, 2016. "A class-based link prediction using Distance Dependent Chinese Restaurant Process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 204-214.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yanyan & Li, Keping & Yan, Dongyang & Gu, Shuang, 2022. "A network-based CNN model to identify the hidden information in text data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Likang & Zheng, Haoyang & Bian, Tian & Deng, Yong, 2017. "An evidential link prediction method and link predictability based on Shannon entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 699-712.
    2. Yao, Yabing & Zhang, Ruisheng & Yang, Fan & Tang, Jianxin & Yuan, Yongna & Hu, Rongjing, 2018. "Link prediction in complex networks based on the interactions among paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 52-67.
    3. Chi, Kuo & Qu, Hui & Yin, Guisheng, 2022. "Link prediction for existing links in dynamic networks based on the attraction force," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    4. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    5. Shugang Li & Ziming Wang & Beiyan Zhang & Boyi Zhu & Zhifang Wen & Zhaoxu Yu, 2022. "The Research of “Products Rapidly Attracting Users” Based on the Fully Integrated Link Prediction Algorithm," Mathematics, MDPI, vol. 10(14), pages 1-19, July.
    6. Yu, Jiating & Wu, Ling-Yun, 2022. "Multiple Order Local Information model for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    7. Zhang, Ting & Zhang, Kun & Li, Xun & Lv, Laishui & Sun, Qi, 2021. "Semi-supervised link prediction based on non-negative matrix factorization for temporal networks," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    8. Zhou, Tao & Lee, Yan-Li & Wang, Guannan, 2021. "Experimental analyses on 2-hop-based and 3-hop-based link prediction algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    9. Lee, Yan-Li & Dong, Qiang & Zhou, Tao, 2021. "Link prediction via controlling the leading eigenvector," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    10. Wang, Jun & Zhang, Qian-Ming & Zhou, Tao, 2019. "Tag-aware link prediction algorithm in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 105-111.
    11. Rafiee, Samira & Salavati, Chiman & Abdollahpouri, Alireza, 2020. "CNDP: Link prediction based on common neighbors degree penalization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    12. Kai Yang & Yuan Liu & Zijuan Zhao & Xingxing Zhou & Peijin Ding, 2023. "Graph attention network via node similarity for link prediction," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-10, March.
    13. Mungo, Luca & Lafond, François & Astudillo-Estévez, Pablo & Farmer, J. Doyne, 2023. "Reconstructing production networks using machine learning," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
    14. Yin, Likang & Deng, Yong, 2018. "Measuring transferring similarity via local information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 102-115.
    15. Charikhi, Mourad, 2024. "Association of the PageRank algorithm with similarity-based methods for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    16. Najari, Shaghayegh & Salehi, Mostafa & Ranjbar, Vahid & Jalili, Mahdi, 2019. "Link prediction in multiplex networks based on interlayer similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    17. Zhou, Tao, 2023. "Discriminating abilities of threshold-free evaluation metrics in link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    18. Kumar, Ajay & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction techniques, applications, and performance: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    19. Chunning Wang & Fengqin Tang & Xuejing Zhao, 2023. "LPGRI: A Global Relevance-Based Link Prediction Approach for Multiplex Networks," Mathematics, MDPI, vol. 11(14), pages 1-15, July.
    20. Jiang, Zhongyuan & Tang, Xiaoke & Zeng, Yong & Li, Jinku & Ma, Jianfeng, 2021. "Adversarial link deception against the link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:570:y:2021:i:c:s0378437121000674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.