IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v553y2020ics0378437120303265.html
   My bibliography  Save this article

Link prediction in the Granger causality network of the global currency market

Author

Listed:
  • Park, Ji Hwan
  • Chang, Woojin
  • Song, Jae Wook

Abstract

In this study, we analyze the topology of the global currency market using the Granger causality network and attempt to predict its links by utilizing the real effective exchange rate of 61 countries. In this context, we suggest two new link prediction methods using the eta squared as a weight of link. For the network analysis, we focus on the changes in cross-sectional topology and time-varying properties of the causality network during the sub-prime mortgage crisis, the European debt crisis, and the Chinese stock market turbulence. For the link prediction, we evaluate the prediction performance of the proposed method and those of other benchmarks. Based on the results, we observe significant increments in out-degrees and in-degrees of the originating continents of the global financial crisis. Also, we confirm the best prediction accuracy of the weighted causality method based on the statistical significance of higher area under curve in every aspect.

Suggested Citation

  • Park, Ji Hwan & Chang, Woojin & Song, Jae Wook, 2020. "Link prediction in the Granger causality network of the global currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
  • Handle: RePEc:eee:phsmap:v:553:y:2020:i:c:s0378437120303265
    DOI: 10.1016/j.physa.2020.124668
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120303265
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124668?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Konno, Tomohiko, 2016. "Knowledge spillover processes as complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1207-1214.
    2. Marc Klau & San Sau Fung, 2006. "The new BIS effective exchange rate indices," BIS Quarterly Review, Bank for International Settlements, March.
    3. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    4. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871, September.
    5. Qian-Ming Zhang & Linyuan Lü & Wen-Qiang Wang & Yu-Xiao & Tao Zhou, 2013. "Potential Theory for Directed Networks," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-8, February.
    6. Latora, Vito & Marchiori, Massimo, 2002. "Is the Boston subway a small-world network?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 109-113.
    7. Lambiotte, Renaud & Blondel, Vincent D. & de Kerchove, Cristobald & Huens, Etienne & Prieur, Christophe & Smoreda, Zbigniew & Van Dooren, Paul, 2008. "Geographical dispersal of mobile communication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5317-5325.
    8. Comellas, Francesc & Sampels, Michael, 2002. "Deterministic small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 309(1), pages 231-235.
    9. Simonsen, Ingve & Astrup Eriksen, Kasper & Maslov, Sergei & Sneppen, Kim, 2004. "Diffusion on complex networks: a way to probe their large-scale topological structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 163-173.
    10. Song, Jae Wook & Ko, Bonggyun & Cho, Poongjin & Chang, Woojin, 2016. "Time-varying causal network of the Korean financial system based on firm-specific risk premiums," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 287-302.
    11. Aaron Clauset & Cristopher Moore & M. E. J. Newman, 2008. "Hierarchical structure and the prediction of missing links in networks," Nature, Nature, vol. 453(7191), pages 98-101, May.
    12. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    13. Liu, Jun & Xiong, Qingyu & Shi, Weiren & Shi, Xin & Wang, Kai, 2016. "Evaluating the importance of nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 209-219.
    14. Derényi, Imre & Farkas, Illés & Palla, Gergely & Vicsek, Tamás, 2004. "Topological phase transitions of random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 334(3), pages 583-590.
    15. Zheng, Jian-Feng & Gao, Zi-You, 2008. "A weighted network evolution with traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6177-6182.
    16. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    17. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    18. Ma, Ling-ling & Ma, Chuang & Zhang, Hai-Feng & Wang, Bing-Hong, 2016. "Identifying influential spreaders in complex networks based on gravity formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 205-212.
    19. Gao, Bo & Ren, Ruo-en, 2013. "The topology of a causal network for the Chinese financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2965-2976.
    20. David Liben‐Nowell & Jon Kleinberg, 2007. "The link‐prediction problem for social networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(7), pages 1019-1031, May.
    21. Mariusz Maziarz, 2015. "A review of the Granger-causality fallacy," The Journal of Philosophical Economics, Bucharest Academy of Economic Studies, The Journal of Philosophical Economics, vol. 8(2), May.
    22. Wang, Xiao Fan & Chen, Guanrong, 2002. "Pinning control of scale-free dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 310(3), pages 521-531.
    23. Bagler, Ganesh, 2008. "Analysis of the airport network of India as a complex weighted network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2972-2980.
    24. Hidalgo, Cesar A. & Rodriguez-Sickert, C., 2008. "The dynamics of a mobile phone network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 3017-3024.
    25. Zhou, Wen & Jia, Yifan, 2017. "Predicting links based on knowledge dissemination in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 561-568.
    26. Polanco-Martínez, J.M. & Fernández-Macho, J. & Neumann, M.B. & Faria, S.H., 2018. "A pre-crisis vs. crisis analysis of peripheral EU stock markets by means of wavelet transform and a nonlinear causality test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1211-1227.
    27. Wu, Jian-Jun & Gao, Zi-You & Sun, Hui-jun, 2008. "Optimal traffic networks topology: A complex networks perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 1025-1032.
    28. Leo Katz, 1953. "A new status index derived from sociometric analysis," Psychometrika, Springer;The Psychometric Society, vol. 18(1), pages 39-43, March.
    29. Tadić, Bosiljka & Thurner, Stefan, 2004. "Information super-diffusion on structured networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 566-584.
    30. Liu, Jingzhou & Wu, Jinshan & Yang, Z.R., 2004. "The spread of infectious disease on complex networks with household-structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 273-280.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Domino, Krzysztof & Miszczak, Jarosław Adam, 2022. "Will you infect me with your opinion?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    2. Douglas Castilho & Tharsis T. P. Souza & Soong Moon Kang & Jo~ao Gama & Andr'e C. P. L. F. de Carvalho, 2021. "Forecasting Financial Market Structure from Network Features using Machine Learning," Papers 2110.11751, arXiv.org.
    3. Cho, Younghwan & Song, Jae Wook, 2023. "Hierarchical risk parity using security selection based on peripheral assets of correlation-based minimum spanning trees," Finance Research Letters, Elsevier, vol. 53(C).
    4. Su, Zhi & Liu, Peng & Fang, Tong, 2022. "Uncertainty matters in US financial information spillovers: Evidence from a directed acyclic graph approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 229-242.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jun & Zhang, Qian-Ming & Zhou, Tao, 2019. "Tag-aware link prediction algorithm in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 105-111.
    2. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    3. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    4. Chi, Kuo & Qu, Hui & Yin, Guisheng, 2022. "Link prediction for existing links in dynamic networks based on the attraction force," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    5. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    6. Zhou, Tao & Lee, Yan-Li & Wang, Guannan, 2021. "Experimental analyses on 2-hop-based and 3-hop-based link prediction algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    7. Wang, Xiaojie & Zhang, Xue & Zhao, Chengli & Xie, Zheng & Zhang, Shengjun & Yi, Dongyun, 2015. "Predicting link directions using local directed path," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 260-267.
    8. Lee, Yan-Li & Dong, Qiang & Zhou, Tao, 2021. "Link prediction via controlling the leading eigenvector," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    9. Liu, Yangyang & Zhao, Chengli & Wang, Xiaojie & Huang, Qiangjuan & Zhang, Xue & Yi, Dongyun, 2016. "The degree-related clustering coefficient and its application to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 24-33.
    10. Chen, Xing & Wu, Tao & Xian, Xingping & Wang, Chao & Yuan, Ye & Ming, Guannan, 2020. "Enhancing robustness of link prediction for noisy complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    11. Kumar, Ajay & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction techniques, applications, and performance: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    12. Chunning Wang & Fengqin Tang & Xuejing Zhao, 2023. "LPGRI: A Global Relevance-Based Link Prediction Approach for Multiplex Networks," Mathematics, MDPI, vol. 11(14), pages 1-15, July.
    13. Yao, Yabing & Zhang, Ruisheng & Yang, Fan & Tang, Jianxin & Yuan, Yongna & Hu, Rongjing, 2018. "Link prediction in complex networks based on the interactions among paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 52-67.
    14. Pei, Panpan & Liu, Bo & Jiao, Licheng, 2017. "Link prediction in complex networks based on an information allocation index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 1-11.
    15. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    16. Shenshen Bai & Longjie Li & Jianjun Cheng & Shijin Xu & Xiaoyun Chen, 2018. "Predicting Missing Links Based on a New Triangle Structure," Complexity, Hindawi, vol. 2018, pages 1-11, December.
    17. Zhang, Xue & Wang, Xiaojie & Zhao, Chengli & Yi, Dongyun & Xie, Zheng, 2014. "Degree-corrected stochastic block models and reliability in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 553-559.
    18. Kai Yang & Yuan Liu & Zijuan Zhao & Xingxing Zhou & Peijin Ding, 2023. "Graph attention network via node similarity for link prediction," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-10, March.
    19. Mungo, Luca & Lafond, François & Astudillo-Estévez, Pablo & Farmer, J. Doyne, 2023. "Reconstructing production networks using machine learning," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
    20. Yu, Jiating & Wu, Ling-Yun, 2022. "Multiple Order Local Information model for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:553:y:2020:i:c:s0378437120303265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.