IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0206312.html
   My bibliography  Save this article

Comparison of normalization approaches for gene expression studies completed with high-throughput sequencing

Author

Listed:
  • Farnoosh Abbas-Aghababazadeh
  • Qian Li
  • Brooke L Fridley

Abstract

Normalization of RNA-Seq data has proven essential to ensure accurate inferences and replication of findings. Hence, various normalization methods have been proposed for various technical artifacts that can be present in high-throughput sequencing transcriptomic studies. In this study, we set out to compare the widely used library size normalization methods (UQ, TMM, and RLE) and across sample normalization methods (SVA, RUV, and PCA) for RNA-Seq data using publicly available data from The Cancer Genome Atlas (TCGA) cervical cancer study. Additionally, an extensive simulation study was completed to compare the performance of the across sample normalization methods in estimating technical artifacts. Lastly, we investigated the effect of reduction in degrees of freedom in the normalized data and their impact on downstream differential expression analysis results. Based on this study, the TMM and RLE library size normalization methods give similar results for CESC dataset. In addition, the simulated datasets results show that the SVA (“BE”) method outperforms the other methods (SVA “Leek”, PCA) by correctly estimating the number of latent artifacts. Moreover, ignoring the loss of degrees of freedom due to normalization results in an inflated type I error rates. We recommend adjusting not only for library size differences but also the assessment of known and unknown technical artifacts in the data, and if needed, complete across sample normalization. In addition, we suggest that one includes the known and estimated latent artifacts in the design matrix to correctly account for the loss in degrees of freedom, as opposed to completing the analysis on the post-processed normalized data.

Suggested Citation

  • Farnoosh Abbas-Aghababazadeh & Qian Li & Brooke L Fridley, 2018. "Comparison of normalization approaches for gene expression studies completed with high-throughput sequencing," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-21, October.
  • Handle: RePEc:plo:pone00:0206312
    DOI: 10.1371/journal.pone.0206312
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0206312
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0206312&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0206312?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nick Patterson & Alkes L Price & David Reich, 2006. "Population Structure and Eigenanalysis," PLOS Genetics, Public Library of Science, vol. 2(12), pages 1-20, December.
    2. Stephen B. Montgomery & Micha Sammeth & Maria Gutierrez-Arcelus & Radoslaw P. Lach & Catherine Ingle & James Nisbett & Roderic Guigo & Emmanouil T. Dermitzakis, 2010. "Transcriptome genetics using second generation sequencing in a Caucasian population," Nature, Nature, vol. 464(7289), pages 773-777, April.
    3. Jeffrey T Leek & John D Storey, 2007. "Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis," PLOS Genetics, Public Library of Science, vol. 3(9), pages 1-12, September.
    4. Christopher A. Maher & Chandan Kumar-Sinha & Xuhong Cao & Shanker Kalyana-Sundaram & Bo Han & Xiaojun Jing & Lee Sam & Terrence Barrette & Nallasivam Palanisamy & Arul M. Chinnaiyan, 2009. "Transcriptome sequencing to detect gene fusions in cancer," Nature, Nature, vol. 458(7234), pages 97-101, March.
    5. Jeffrey T. Leek, 2011. "Asymptotic Conditional Singular Value Decomposition for High-Dimensional Genomic Data," Biometrics, The International Biometric Society, vol. 67(2), pages 344-352, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Wang, 2020. "A Zipf-plot based normalization method for high-throughput RNA-seq data," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christos Miliotis & Yuling Ma & Xanthi-Lida Katopodi & Dimitra Karagkouni & Eleni Kanata & Kaia Mattioli & Nikolas Kalavros & Yered H. Pita-Juárez & Felipe Batalini & Varune R. Ramnarine & Shivani Nan, 2024. "Determinants of gastric cancer immune escape identified from non-coding immune-landscape quantitative trait loci," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Jungsoo Gim & Sungho Won & Taesung Park, 2016. "LPEseq: Local-Pooled-Error Test for RNA Sequencing Experiments with a Small Number of Replicates," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-15, August.
    3. Gyaneshwer Chaubey & Anurag Kadian & Saroj Bala & Vadlamudi Raghavendra Rao, 2015. "Genetic Affinity of the Bhil, Kol and Gond Mentioned in Epic Ramayana," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-11, June.
    4. Daniel Svensson & Matilda Rentoft & Anna M Dahlin & Emma Lundholm & Pall I Olason & Andreas Sjödin & Carin Nylander & Beatrice S Melin & Johan Trygg & Erik Johansson, 2020. "A whole-genome sequenced control population in northern Sweden reveals subregional genetic differences," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-18, September.
    5. Estavoyer, Maxime & François, Olivier, 2022. "Theoretical analysis of principal components in an umbrella model of intraspecific evolution," Theoretical Population Biology, Elsevier, vol. 148(C), pages 11-21.
    6. Felsenstein, Joseph, 2015. "Covariation of gene frequencies in a stepping-stone lattice of populations," Theoretical Population Biology, Elsevier, vol. 100(C), pages 88-97.
    7. Yaron Granot & Omri Tal & Saharon Rosset & Karl Skorecki, 2016. "On the Apportionment of Population Structure," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-24, August.
    8. Özkan İş & Xue Wang & Joseph S. Reddy & Yuhao Min & Elanur Yilmaz & Prabesh Bhattarai & Tulsi Patel & Jeremiah Bergman & Zachary Quicksall & Michael G. Heckman & Frederick Q. Tutor-New & Birsen Can De, 2024. "Gliovascular transcriptional perturbations in Alzheimer’s disease reveal molecular mechanisms of blood brain barrier dysfunction," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    9. Arjun Bhattacharya & Anastasia N. Freedman & Vennela Avula & Rebeca Harris & Weifang Liu & Calvin Pan & Aldons J. Lusis & Robert M. Joseph & Lisa Smeester & Hadley J. Hartwell & Karl C. K. Kuban & Car, 2022. "Placental genomics mediates genetic associations with complex health traits and disease," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Hyosik Jang & Ian M Ehrenreich, 2012. "Genome-Wide Characterization of Genetic Variation in the Unicellular, Green Alga Chlamydomonas reinhardtii," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    11. Mathieu Gautier & Denis Laloë & Katayoun Moazami-Goudarzi, 2010. "Insights into the Genetic History of French Cattle from Dense SNP Data on 47 Worldwide Breeds," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-11, September.
    12. Xiaofeng Cai & Xuepeng Sun & Chenxi Xu & Honghe Sun & Xiaoli Wang & Chenhui Ge & Zhonghua Zhang & Quanxi Wang & Zhangjun Fei & Chen Jiao & Quanhua Wang, 2021. "Genomic analyses provide insights into spinach domestication and the genetic basis of agronomic traits," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    13. Lee, Anthony J. & Hibbs, Courtney & Wright, Margaret J. & Martin, Nicholas G. & Keller, Matthew C. & Zietsch, Brendan P., 2017. "Assessing the accuracy of perceptions of intelligence based on heritable facial features," Intelligence, Elsevier, vol. 64(C), pages 1-8.
    14. Thompson Katherine L. & Linnen Catherine R. & Kubatko Laura, 2016. "Tree-based quantitative trait mapping in the presence of external covariates," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(6), pages 473-490, December.
    15. Matthieu Bouaziz & Caroline Paccard & Mickael Guedj & Christophe Ambroise, 2012. "SHIPS: Spectral Hierarchical Clustering for the Inference of Population Structure in Genetic Studies," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-17, October.
    16. repec:jss:jstsof:40:i14 is not listed on IDEAS
    17. Jacobo Pardo-Seco & Alberto Gómez-Carballa & Jorge Amigo & Federico Martinón-Torres & Antonio Salas, 2014. "A Genome-Wide Study of Modern-Day Tuscans: Revisiting Herodotus's Theory on the Origin of the Etruscans," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-11, September.
    18. Andrey V Khrunin & Denis V Khokhrin & Irina N Filippova & Tõnu Esko & Mari Nelis & Natalia A Bebyakova & Natalia L Bolotova & Janis Klovins & Liene Nikitina-Zake & Karola Rehnström & Samuli Ripatti & , 2013. "A Genome-Wide Analysis of Populations from European Russia Reveals a New Pole of Genetic Diversity in Northern Europe," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-9, March.
    19. Ilja M Nolte & Chris Wallace & Stephen J Newhouse & Daryl Waggott & Jingyuan Fu & Nicole Soranzo & Rhian Gwilliam & Panos Deloukas & Irina Savelieva & Dongling Zheng & Chrysoula Dalageorgou & Martin F, 2009. "Common Genetic Variation Near the Phospholamban Gene Is Associated with Cardiac Repolarisation: Meta-Analysis of Three Genome-Wide Association Studies," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-10, July.
    20. Hoicheong Siu & Li Jin & Momiao Xiong, 2012. "Manifold Learning for Human Population Structure Studies," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-18, January.
    21. Elodie Persyn & Richard Redon & Lise Bellanger & Christian Dina, 2018. "The impact of a fine-scale population stratification on rare variant association test results," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0206312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.