IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v67y2011i2p344-352.html
   My bibliography  Save this article

Asymptotic Conditional Singular Value Decomposition for High-Dimensional Genomic Data

Author

Listed:
  • Jeffrey T. Leek

Abstract

No abstract is available for this item.

Suggested Citation

  • Jeffrey T. Leek, 2011. "Asymptotic Conditional Singular Value Decomposition for High-Dimensional Genomic Data," Biometrics, The International Biometric Society, vol. 67(2), pages 344-352, June.
  • Handle: RePEc:bla:biomet:v:67:y:2011:i:2:p:344-352
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2010.01455.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John D. Storey & Jonathan E. Taylor & David Siegmund, 2004. "Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 187-205, February.
    2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    3. Hengjian Cui, 2003. "Asymptotic distributions of principal components based on robust dispersions," Biometrika, Biometrika Trust, vol. 90(4), pages 953-966, December.
    4. Connor, Gregory & Korajczyk, Robert A, 1993. "A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-1291, September.
    5. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
    6. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    7. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farnoosh Abbas-Aghababazadeh & Qian Li & Brooke L Fridley, 2018. "Comparison of normalization approaches for gene expression studies completed with high-throughput sequencing," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-21, October.
    2. Hong, David & Balzano, Laura & Fessler, Jeffrey A., 2018. "Asymptotic performance of PCA for high-dimensional heteroscedastic data," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 435-452.
    3. Manuel Ordóñez Cabrera & Andrew Rosalsky & Andrei Volodin, 2012. "Some theorems on conditional mean convergence and conditional almost sure convergence for randomly weighted sums of dependent random variables," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 369-385, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
    2. Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
    3. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," DSSR Discussion Papers 96, Graduate School of Economics and Management, Tohoku University.
    4. GUO-FITOUSSI, Liang, 2013. "A Comparison of the Finite Sample Properties of Selection Rules of Factor Numbers in Large Datasets," MPRA Paper 50005, University Library of Munich, Germany.
    5. Li, Hongjun & Li, Qi & Shi, Yutang, 2017. "Determining the number of factors when the number of factors can increase with sample size," Journal of Econometrics, Elsevier, vol. 197(1), pages 76-86.
    6. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    7. Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
    8. repec:hum:wpaper:sfb649dp2014-004 is not listed on IDEAS
    9. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    10. Barigozzi, Matteo & Hallin, Marc, 2020. "Generalized dynamic factor models and volatilities: Consistency, rates, and prediction intervals," Journal of Econometrics, Elsevier, vol. 216(1), pages 4-34.
    11. Bodnar, Taras & Reiß, Markus, 2016. "Exact and asymptotic tests on a factor model in low and large dimensions with applications," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 125-151.
    12. Aboura, Sofiane & Chevallier, Julien, 2017. "A new weighting-scheme for equity indexes," International Review of Financial Analysis, Elsevier, vol. 54(C), pages 159-175.
    13. Du, Lilun & Lan, Wei & Luo, Ronghua & Zhong, Pingshou, 2018. "Factor-adjusted multiple testing of correlations," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 34-47.
    14. Francisco Peñaranda & Enrique Sentana, 2024. "Portfolio management with big data," Working Papers wp2024_2411, CEMFI.
    15. Aboura, Sofiane & Chevallier, Julien, 2015. "Cross-market volatility index with Factor-DCC," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 132-140.
    16. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    17. Mao Takongmo, Charles Olivier & Stevanovic, Dalibor, 2015. "Selection Of The Number Of Factors In Presence Of Structural Instability: A Monte Carlo Study," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 177-233, Mars-Juin.
    18. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
    19. Joongyeub Yeo & George Papanicolaou, 2016. "Random matrix approach to estimation of high-dimensional factor models," Papers 1611.05571, arXiv.org, revised Nov 2017.
    20. Bai, Jushan & Liao, Yuan, 2012. "Efficient Estimation of Approximate Factor Models," MPRA Paper 41558, University Library of Munich, Germany.
    21. Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2018. "Factor models for portfolio selection in large dimensions: the good, the better and the ugly," ECON - Working Papers 290, Department of Economics - University of Zurich, revised Dec 2018.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:67:y:2011:i:2:p:344-352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.