IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0203224.html
   My bibliography  Save this article

Bayesian analysis of isothermal titration calorimetry for binding thermodynamics

Author

Listed:
  • Trung Hai Nguyen
  • Ariën S Rustenburg
  • Stefan G Krimmer
  • Hexi Zhang
  • John D Clark
  • Paul A Novick
  • Kim Branson
  • Vijay S Pande
  • John D Chodera
  • David D L Minh

Abstract

Isothermal titration calorimetry (ITC) is the only technique able to determine both the enthalpy and entropy of noncovalent association in a single experiment. The standard data analysis method based on nonlinear regression, however, provides unrealistically small uncertainty estimates due to its neglect of dominant sources of error. Here, we present a Bayesian framework for sampling from the posterior distribution of all thermodynamic parameters and other quantities of interest from one or more ITC experiments, allowing uncertainties and correlations to be quantitatively assessed. For a series of ITC measurements on metal:chelator and protein:ligand systems, the Bayesian approach yields uncertainties which represent the variability from experiment to experiment more accurately than the standard data analysis. In some datasets, the median enthalpy of binding is shifted by as much as 1.5 kcal/mol. A Python implementation suitable for analysis of data generated by MicroCal instruments (and adaptable to other calorimeters) is freely available online.

Suggested Citation

  • Trung Hai Nguyen & Ariën S Rustenburg & Stefan G Krimmer & Hexi Zhang & John D Clark & Paul A Novick & Kim Branson & Vijay S Pande & John D Chodera & David D L Minh, 2018. "Bayesian analysis of isothermal titration calorimetry for binding thermodynamics," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-26, September.
  • Handle: RePEc:plo:pone00:0203224
    DOI: 10.1371/journal.pone.0203224
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0203224
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0203224&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0203224?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patil, Anand & Huard, David & Fonnesbeck, Christopher J., 2010. "PyMC: Bayesian Stochastic Modelling in Python," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i04).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruzzone, Octavio A. & Logarzo, Guillermo A. & Aguirre, María B. & Virla, Eduardo G., 2018. "Intra-host interspecific larval parasitoid competition solved using modelling and bayesian statistics," Ecological Modelling, Elsevier, vol. 385(C), pages 114-123.
    2. Liu, Xiaoqi & Lee, Seungjae & Bilionis, Ilias & Karava, Panagiota & Joe, Jaewan & Sadeghi, Seyed Amir, 2021. "A user-interactive system for smart thermal environment control in office buildings," Applied Energy, Elsevier, vol. 298(C).
    3. Andrew Gelman & Daniel Lee & Jiqiang Guo, 2015. "Stan," Journal of Educational and Behavioral Statistics, , vol. 40(5), pages 530-543, October.
    4. Wright, James R. & Leyton-Brown, Kevin, 2017. "Predicting human behavior in unrepeated, simultaneous-move games," Games and Economic Behavior, Elsevier, vol. 106(C), pages 16-37.
    5. Weijie Liu & Yan Shen & Lijuan Shen, 2022. "Degradation Modeling for Lithium-Ion Batteries with an Exponential Jump-Diffusion Model," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    6. Tobias Houska & Philipp Kraft & Alejandro Chamorro-Chavez & Lutz Breuer, 2015. "SPOTting Model Parameters Using a Ready-Made Python Package," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-22, December.
    7. Alsudais, Abdulkareem, 2021. "In-code citation practices in open research software libraries," Journal of Informetrics, Elsevier, vol. 15(2).
    8. Chakraborty, Shantanu & Okabe, Toshiya, 2016. "Robust energy storage scheduling for imbalance reduction of strategically formed energy balancing groups," Energy, Elsevier, vol. 114(C), pages 405-417.
    9. Julian C Evans & Colin J Torney & Stephen C Votier & Sasha R X Dall, 2019. "Social information use and collective foraging in a pursuit diving seabird," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-15, September.
    10. Claudia Sala & Enrico Giampieri & Silvia Vitali & Paolo Garagnani & Daniel Remondini & Armando Bazzani & Claudio Franceschi & Gastone C Castellani, 2020. "Gut microbiota ecology: Biodiversity estimated from hybrid neutral-niche model increases with health status and aging," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-23, October.
    11. Won-Mo Jung & Ye-Seul Lee & Christian Wallraven & Younbyoung Chae, 2017. "Bayesian prediction of placebo analgesia in an instrumental learning model," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-11, February.
    12. Rungskunroch, Panrawee & Jack, Anson & Kaewunruen, Sakdirat, 2021. "Benchmarking on railway safety performance using Bayesian inference, decision tree and petri-net techniques based on long-term accidental data sets," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    13. Clithero, John A., 2018. "Improving out-of-sample predictions using response times and a model of the decision process," Journal of Economic Behavior & Organization, Elsevier, vol. 148(C), pages 344-375.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0203224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.