IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0172609.html
   My bibliography  Save this article

Bayesian prediction of placebo analgesia in an instrumental learning model

Author

Listed:
  • Won-Mo Jung
  • Ye-Seul Lee
  • Christian Wallraven
  • Younbyoung Chae

Abstract

Placebo analgesia can be primarily explained by the Pavlovian conditioning paradigm in which a passively applied cue becomes associated with less pain. In contrast, instrumental conditioning employs an active paradigm that might be more similar to clinical settings. In the present study, an instrumental conditioning paradigm involving a modified trust game in a simulated clinical situation was used to induce placebo analgesia. Additionally, Bayesian modeling was applied to predict the placebo responses of individuals based on their choices. Twenty-four participants engaged in a medical trust game in which decisions to receive treatment from either a doctor (more effective with high cost) or a pharmacy (less effective with low cost) were made after receiving a reference pain stimulus. In the conditioning session, the participants received lower levels of pain following both choices, while high pain stimuli were administered in the test session even after making the decision. The choice-dependent pain in the conditioning session was modulated in terms of both intensity and uncertainty. Participants reported significantly less pain when they chose the doctor or the pharmacy for treatment compared to the control trials. The predicted pain ratings based on Bayesian modeling showed significant correlations with the actual reports from participants for both of the choice categories. The instrumental conditioning paradigm allowed for the active choice of optional cues and was able to induce the placebo analgesia effect. Additionally, Bayesian modeling successfully predicted pain ratings in a simulated clinical situation that fits well with placebo analgesia induced by instrumental conditioning.

Suggested Citation

  • Won-Mo Jung & Ye-Seul Lee & Christian Wallraven & Younbyoung Chae, 2017. "Bayesian prediction of placebo analgesia in an instrumental learning model," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-11, February.
  • Handle: RePEc:plo:pone00:0172609
    DOI: 10.1371/journal.pone.0172609
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172609
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0172609&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0172609?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patil, Anand & Huard, David & Fonnesbeck, Christopher J., 2010. "PyMC: Bayesian Stochastic Modelling in Python," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i04).
    2. Margaret C Wardle & Daniel A Fitzgerald & Michael Angstadt & Chandra S Sripada & Kevin McCabe & K Luan Phan, 2013. "The Caudate Signals Bad Reputation during Trust Decisions," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-1, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Flavia Mancini & Suyi Zhang & Ben Seymour, 2022. "Computational and neural mechanisms of statistical pain learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruzzone, Octavio A. & Logarzo, Guillermo A. & Aguirre, María B. & Virla, Eduardo G., 2018. "Intra-host interspecific larval parasitoid competition solved using modelling and bayesian statistics," Ecological Modelling, Elsevier, vol. 385(C), pages 114-123.
    2. Liu, Xiaoqi & Lee, Seungjae & Bilionis, Ilias & Karava, Panagiota & Joe, Jaewan & Sadeghi, Seyed Amir, 2021. "A user-interactive system for smart thermal environment control in office buildings," Applied Energy, Elsevier, vol. 298(C).
    3. Andrew Gelman & Daniel Lee & Jiqiang Guo, 2015. "Stan," Journal of Educational and Behavioral Statistics, , vol. 40(5), pages 530-543, October.
    4. Wright, James R. & Leyton-Brown, Kevin, 2017. "Predicting human behavior in unrepeated, simultaneous-move games," Games and Economic Behavior, Elsevier, vol. 106(C), pages 16-37.
    5. Weijie Liu & Yan Shen & Lijuan Shen, 2022. "Degradation Modeling for Lithium-Ion Batteries with an Exponential Jump-Diffusion Model," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    6. Tobias Houska & Philipp Kraft & Alejandro Chamorro-Chavez & Lutz Breuer, 2015. "SPOTting Model Parameters Using a Ready-Made Python Package," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-22, December.
    7. Alsudais, Abdulkareem, 2021. "In-code citation practices in open research software libraries," Journal of Informetrics, Elsevier, vol. 15(2).
    8. Chakraborty, Shantanu & Okabe, Toshiya, 2016. "Robust energy storage scheduling for imbalance reduction of strategically formed energy balancing groups," Energy, Elsevier, vol. 114(C), pages 405-417.
    9. Trung Hai Nguyen & Ariën S Rustenburg & Stefan G Krimmer & Hexi Zhang & John D Clark & Paul A Novick & Kim Branson & Vijay S Pande & John D Chodera & David D L Minh, 2018. "Bayesian analysis of isothermal titration calorimetry for binding thermodynamics," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-26, September.
    10. Julian C Evans & Colin J Torney & Stephen C Votier & Sasha R X Dall, 2019. "Social information use and collective foraging in a pursuit diving seabird," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-15, September.
    11. Claudia Sala & Enrico Giampieri & Silvia Vitali & Paolo Garagnani & Daniel Remondini & Armando Bazzani & Claudio Franceschi & Gastone C Castellani, 2020. "Gut microbiota ecology: Biodiversity estimated from hybrid neutral-niche model increases with health status and aging," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-23, October.
    12. Rungskunroch, Panrawee & Jack, Anson & Kaewunruen, Sakdirat, 2021. "Benchmarking on railway safety performance using Bayesian inference, decision tree and petri-net techniques based on long-term accidental data sets," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    13. Clithero, John A., 2018. "Improving out-of-sample predictions using response times and a model of the decision process," Journal of Economic Behavior & Organization, Elsevier, vol. 148(C), pages 344-375.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0172609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.