IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0198684.html
   My bibliography  Save this article

Neighborhood characteristics and violence behind closed doors: The spatial overlap of child maltreatment and intimate partner violence

Author

Listed:
  • Enrique Gracia
  • Antonio López-Quílez
  • Miriam Marco
  • Marisol Lila

Abstract

In this study, we analyze first whether there is a common spatial distribution of child maltreatment (CM) and intimate partner violence (IPV), and second, whether the risks of CM and IPV are influenced by the same neighborhood characteristics, and if these risks spatially overlap. To this end we used geocoded data of CM referrals (N = 588) and IPV incidents (N = 1450) in the city of Valencia (Spain). As neighborhood proxies, we used 552 census block groups. Neighborhood characteristics analyzed at the aggregated level (census block groups) were: Neighborhood concentrated disadvantage (neighborhood economic status, neighborhood education level, and policing activity), immigrant concentration, and residential instability. A Bayesian joint modeling approach was used to examine the spatial distribution of CM and IPV, and a Bayesian random-effects modeling approach was used to analyze the influence of neighborhood-level characteristics on small-area variations of CM and IPV risks. For CM, 98% of the total between-area variation in risk was captured by a shared spatial component, while for IPV the shared component was 77%. The risks of CM and IPV were higher in neighborhoods characterized by lower levels of economic status and education, and higher levels of policing activity, immigrant concentration, and residential instability. The correlation between the log relative risk of CM and IPV was .85. Most census block groups had either low or high risks in both outcomes (with only 10.5% of the areas with mismatched risks). These results show that certain neighborhood characteristics are associated with an increase in the risk of family violence, regardless of whether this violence is against children or against intimate partners. Identifying these high-risk areas can inform a more integrated community-level response to both types of family violence. Future research should consider a community-level approach to address both types of family violence, as opposed to individual-level intervention addressing each type of violence separately.

Suggested Citation

  • Enrique Gracia & Antonio López-Quílez & Miriam Marco & Marisol Lila, 2018. "Neighborhood characteristics and violence behind closed doors: The spatial overlap of child maltreatment and intimate partner violence," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-13, June.
  • Handle: RePEc:plo:pone00:0198684
    DOI: 10.1371/journal.pone.0198684
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198684
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0198684&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0198684?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leonhard Knorr‐Held & Nicola G. Best, 2001. "A shared component model for detecting joint and selective clustering of two diseases," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(1), pages 73-85.
    2. Hill, Terrence D. & Angel, Ronald J., 2005. "Neighborhood disorder, psychological distress, and heavy drinking," Social Science & Medicine, Elsevier, vol. 61(5), pages 965-975, September.
    3. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lidia Puigvert & Ana Vidu & Patricia Melgar & Marifa Salceda, 2021. "BraveNet Upstander Social Network against Second Order of Sexual Harassment," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
    2. Miriam Marco & Enrique Gracia & Antonio López-Quílez & Marisol Lila, 2021. "The Spatial Overlap of Police Calls Reporting Street-Level and Behind-Closed-Doors Crime: A Bayesian Modeling Approach," IJERPH, MDPI, vol. 18(10), pages 1-14, May.
    3. Esther Roca & Patricia Melgar & Regina Gairal-Casadó & Miguel A. Pulido-Rodríguez, 2020. "Schools That ‘Open Doors’ to Prevent Child Abuse in Confinement by COVID-19," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    4. Stela Maria Tavolieri de Oliveira & Ewerton Alexandre Galdeano & Evelynne Maria Gomes Galvão da Trindade & Rafael Saad Fernandez & Rogerio Leone Buchaim & Daniela Vieira Buchaim & Marcelo Rodrigues da, 2021. "Epidemiological Study of Violence against Children and Its Increase during the COVID-19 Pandemic," IJERPH, MDPI, vol. 18(19), pages 1-14, September.
    5. Carol B. Cunradi & William R. Ponicki & Raul Caetano & Harrison J. Alter, 2020. "Frequency of Intimate Partner Violence among an Urban Emergency Department Sample: A Multilevel Analysis," IJERPH, MDPI, vol. 18(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    2. Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.
    3. Li Xu & Qingshan Jiang & David R. Lairson, 2019. "Spatio-Temporal Variation of Gender-Specific Hypertension Risk: Evidence from China," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    4. Maura Mezzetti, 2012. "Bayesian factor analysis for spatially correlated data: application to cancer incidence data in Scotland," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 49-74, March.
    5. Jane Law & Christopher Perlman, 2018. "Exploring Geographic Variation of Mental Health Risk and Service Utilization of Doctors and Hospitals in Toronto: A Shared Component Spatial Modeling Approach," IJERPH, MDPI, vol. 15(4), pages 1-13, March.
    6. Getayeneh Antehunegn Tesema & Zemenu Tadesse Tessema & Stephane Heritier & Rob G. Stirling & Arul Earnest, 2023. "A Systematic Review of Joint Spatial and Spatiotemporal Models in Health Research," IJERPH, MDPI, vol. 20(7), pages 1-24, March.
    7. Peter Congdon, 2008. "The need for psychiatric care in England: a spatial factor methodology," Journal of Geographical Systems, Springer, vol. 10(3), pages 217-239, September.
    8. Giorgia Stoppa & Carolina Mensi & Lucia Fazzo & Giada Minelli & Valerio Manno & Dario Consonni & Annibale Biggeri & Dolores Catelan, 2022. "Spatial Analysis of Shared Risk Factors between Pleural and Ovarian Cancer Mortality in Lombardy (Italy)," IJERPH, MDPI, vol. 19(6), pages 1-15, March.
    9. Qingyun Du & Mingxiao Zhang & Yayan Li & Hui Luan & Shi Liang & Fu Ren, 2016. "Spatial Patterns of Ischemic Heart Disease in Shenzhen, China: A Bayesian Multi-Disease Modelling Approach to Inform Health Planning Policies," IJERPH, MDPI, vol. 13(4), pages 1-14, April.
    10. Rachel Carroll & Andrew B. Lawson & Christel Faes & Russell S. Kirby & Mehreteab Aregay & Kevin Watjou, 2017. "Extensions to Multivariate Space Time Mixture Modeling of Small Area Cancer Data," IJERPH, MDPI, vol. 14(5), pages 1-13, May.
    11. Alastair Rushworth & Duncan Lee & Christophe Sarran, 2017. "An adaptive spatiotemporal smoothing model for estimating trends and step changes in disease risk," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 141-157, January.
    12. Ping Yin & Lan Mu & Marguerite Madden & John Vena, 2014. "Hierarchical Bayesian modeling of spatio-temporal patterns of lung cancer incidence risk in Georgia, USA: 2000–2007," Journal of Geographical Systems, Springer, vol. 16(4), pages 387-407, October.
    13. Renato Assunção & Carl Schmertmann & Joseph Potter & Suzana Cavenaghi, 2005. "Empirical bayes estimation of demographic schedules for small areas," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 537-558, August.
    14. Miriam Marco & Enrique Gracia & Antonio López-Quílez & Marisol Lila, 2021. "The Spatial Overlap of Police Calls Reporting Street-Level and Behind-Closed-Doors Crime: A Bayesian Modeling Approach," IJERPH, MDPI, vol. 18(10), pages 1-14, May.
    15. Rodrigues, E.C. & Assunção, R., 2012. "Bayesian spatial models with a mixture neighborhood structure," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 88-102.
    16. Win Wah & Susannah Ahern & Arul Earnest, 0. "A systematic review of Bayesian spatial–temporal models on cancer incidence and mortality," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 0, pages 1-10.
    17. Samuel O. M Manda & Nada Abdelatif, 2017. "Smoothed Temporal Atlases of Age-Gender All-Cause Mortality in South Africa," IJERPH, MDPI, vol. 14(9), pages 1-18, September.
    18. Xiaoping Jin & Sudipto Banerjee & Bradley P. Carlin, 2007. "Order‐free co‐regionalized areal data models with application to multiple‐disease mapping," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 817-838, November.
    19. Win Wah & Susannah Ahern & Arul Earnest, 2020. "A systematic review of Bayesian spatial–temporal models on cancer incidence and mortality," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 65(5), pages 673-682, June.
    20. Quick, Matthew & Li, Guangquan & Brunton-Smith, Ian, 2018. "Crime-general and crime-specific spatial patterns: A multivariate spatial analysis of four crime types at the small-area scale," Journal of Criminal Justice, Elsevier, vol. 58(C), pages 22-32.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0198684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.