IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v14y2017i5p503-d98002.html
   My bibliography  Save this article

Extensions to Multivariate Space Time Mixture Modeling of Small Area Cancer Data

Author

Listed:
  • Rachel Carroll

    (Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon St, Charleston, SC 29425, USA)

  • Andrew B. Lawson

    (Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon St, Charleston, SC 29425, USA)

  • Christel Faes

    (Interuniversity Institute for Statistics and Statistical Bioinformatics, Hasselt University, 3500 Hasselt, Belgium)

  • Russell S. Kirby

    (Department of Community and Family Health, University of South Florida, Tampa, FL 33620, USA)

  • Mehreteab Aregay

    (Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon St, Charleston, SC 29425, USA)

  • Kevin Watjou

    (Interuniversity Institute for Statistics and Statistical Bioinformatics, Hasselt University, 3500 Hasselt, Belgium)

Abstract

Oral cavity and pharynx cancer, even when considered together, is a fairly rare disease. Implementation of multivariate modeling with lung and bronchus cancer, as well as melanoma cancer of the skin, could lead to better inference for oral cavity and pharynx cancer. The multivariate structure of these models is accomplished via the use of shared random effects, as well as other multivariate prior distributions. The results in this paper indicate that care should be taken when executing these types of models, and that multivariate mixture models may not always be the ideal option, depending on the data of interest.

Suggested Citation

  • Rachel Carroll & Andrew B. Lawson & Christel Faes & Russell S. Kirby & Mehreteab Aregay & Kevin Watjou, 2017. "Extensions to Multivariate Space Time Mixture Modeling of Small Area Cancer Data," IJERPH, MDPI, vol. 14(5), pages 1-13, May.
  • Handle: RePEc:gam:jijerp:v:14:y:2017:i:5:p:503-:d:98002
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/14/5/503/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/14/5/503/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    2. Andrew B. Lawson & Rachel Carroll & Christel Faes & Russell S. Kirby & Mehreteab Aregay & Kevin Watjou, 2017. "Spatiotemporal multivariate mixture models for Bayesian model selection in disease mapping," Environmetrics, John Wiley & Sons, Ltd., vol. 28(8), December.
    3. Leonhard Knorr‐Held & Nicola G. Best, 2001. "A shared component model for detecting joint and selective clustering of two diseases," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(1), pages 73-85.
    4. Rachel Carroll & Andrew B. Lawson & Christel Faes & Russell S. Kirby & Mehreteab Aregay & Kevin Watjou, 2016. "Spatio‐temporal Bayesian model selection for disease mapping," Environmetrics, John Wiley & Sons, Ltd., vol. 27(8), pages 466-478, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Getayeneh Antehunegn Tesema & Zemenu Tadesse Tessema & Stephane Heritier & Rob G. Stirling & Arul Earnest, 2023. "A Systematic Review of Joint Spatial and Spatiotemporal Models in Health Research," IJERPH, MDPI, vol. 20(7), pages 1-24, March.
    2. Samuel O. M Manda & Nada Abdelatif, 2017. "Smoothed Temporal Atlases of Age-Gender All-Cause Mortality in South Africa," IJERPH, MDPI, vol. 14(9), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Win Wah & Susannah Ahern & Arul Earnest, 0. "A systematic review of Bayesian spatial–temporal models on cancer incidence and mortality," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 0, pages 1-10.
    2. Win Wah & Susannah Ahern & Arul Earnest, 2020. "A systematic review of Bayesian spatial–temporal models on cancer incidence and mortality," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 65(5), pages 673-682, June.
    3. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    4. Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.
    5. Li Xu & Qingshan Jiang & David R. Lairson, 2019. "Spatio-Temporal Variation of Gender-Specific Hypertension Risk: Evidence from China," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    6. Enrique Gracia & Antonio López-Quílez & Miriam Marco & Marisol Lila, 2018. "Neighborhood characteristics and violence behind closed doors: The spatial overlap of child maltreatment and intimate partner violence," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-13, June.
    7. Maura Mezzetti, 2012. "Bayesian factor analysis for spatially correlated data: application to cancer incidence data in Scotland," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 49-74, March.
    8. Jane Law & Christopher Perlman, 2018. "Exploring Geographic Variation of Mental Health Risk and Service Utilization of Doctors and Hospitals in Toronto: A Shared Component Spatial Modeling Approach," IJERPH, MDPI, vol. 15(4), pages 1-13, March.
    9. Getayeneh Antehunegn Tesema & Zemenu Tadesse Tessema & Stephane Heritier & Rob G. Stirling & Arul Earnest, 2023. "A Systematic Review of Joint Spatial and Spatiotemporal Models in Health Research," IJERPH, MDPI, vol. 20(7), pages 1-24, March.
    10. Peter Congdon, 2008. "The need for psychiatric care in England: a spatial factor methodology," Journal of Geographical Systems, Springer, vol. 10(3), pages 217-239, September.
    11. Giorgia Stoppa & Carolina Mensi & Lucia Fazzo & Giada Minelli & Valerio Manno & Dario Consonni & Annibale Biggeri & Dolores Catelan, 2022. "Spatial Analysis of Shared Risk Factors between Pleural and Ovarian Cancer Mortality in Lombardy (Italy)," IJERPH, MDPI, vol. 19(6), pages 1-15, March.
    12. Qingyun Du & Mingxiao Zhang & Yayan Li & Hui Luan & Shi Liang & Fu Ren, 2016. "Spatial Patterns of Ischemic Heart Disease in Shenzhen, China: A Bayesian Multi-Disease Modelling Approach to Inform Health Planning Policies," IJERPH, MDPI, vol. 13(4), pages 1-14, April.
    13. Alastair Rushworth & Duncan Lee & Christophe Sarran, 2017. "An adaptive spatiotemporal smoothing model for estimating trends and step changes in disease risk," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 141-157, January.
    14. David Kline & Staci A. Hepler, 2021. "Estimating the burden of the opioid epidemic for adults and adolescents in Ohio counties," Biometrics, The International Biometric Society, vol. 77(2), pages 765-775, June.
    15. Ping Yin & Lan Mu & Marguerite Madden & John Vena, 2014. "Hierarchical Bayesian modeling of spatio-temporal patterns of lung cancer incidence risk in Georgia, USA: 2000–2007," Journal of Geographical Systems, Springer, vol. 16(4), pages 387-407, October.
    16. Renato Assunção & Carl Schmertmann & Joseph Potter & Suzana Cavenaghi, 2005. "Empirical bayes estimation of demographic schedules for small areas," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 537-558, August.
    17. Miriam Marco & Enrique Gracia & Antonio López-Quílez & Marisol Lila, 2021. "The Spatial Overlap of Police Calls Reporting Street-Level and Behind-Closed-Doors Crime: A Bayesian Modeling Approach," IJERPH, MDPI, vol. 18(10), pages 1-14, May.
    18. Rodrigues, E.C. & Assunção, R., 2012. "Bayesian spatial models with a mixture neighborhood structure," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 88-102.
    19. Samuel O. M Manda & Nada Abdelatif, 2017. "Smoothed Temporal Atlases of Age-Gender All-Cause Mortality in South Africa," IJERPH, MDPI, vol. 14(9), pages 1-18, September.
    20. Xiaoping Jin & Sudipto Banerjee & Bradley P. Carlin, 2007. "Order‐free co‐regionalized areal data models with application to multiple‐disease mapping," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 817-838, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:14:y:2017:i:5:p:503-:d:98002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.