IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0192087.html
   My bibliography  Save this article

A drift-diffusion checkpoint model predicts a highly variable and growth-factor-sensitive portion of the cell cycle G1 phase

Author

Listed:
  • Zack W Jones
  • Rachel Leander
  • Vito Quaranta
  • Leonard A Harris
  • Darren R Tyson

Abstract

Even among isogenic cells, the time to progress through the cell cycle, or the intermitotic time (IMT), is highly variable. This variability has been a topic of research for several decades and numerous mathematical models have been proposed to explain it. Previously, we developed a top-down, stochastic drift-diffusion+threshold (DDT) model of a cell cycle checkpoint and showed that it can accurately describe experimentally-derived IMT distributions [Leander R, Allen EJ, Garbett SP, Tyson DR, Quaranta V. Derivation and experimental comparison of cell-division probability densities. J. Theor. Biol. 2014;358:129–135]. Here, we use the DDT modeling approach for both descriptive and predictive data analysis. We develop a custom numerical method for the reliable maximum likelihood estimation of model parameters in the absence of a priori knowledge about the number of detectable checkpoints. We employ this method to fit different variants of the DDT model (with one, two, and three checkpoints) to IMT data from multiple cell lines under different growth conditions and drug treatments. We find that a two-checkpoint model best describes the data, consistent with the notion that the cell cycle can be broadly separated into two steps: the commitment to divide and the process of cell division. The model predicts one part of the cell cycle to be highly variable and growth factor sensitive while the other is less variable and relatively refractory to growth factor signaling. Using experimental data that separates IMT into G1 vs. S, G2, and M phases, we show that the model-predicted growth-factor-sensitive part of the cell cycle corresponds to a portion of G1, consistent with previous studies suggesting that the commitment step is the primary source of IMT variability. These results demonstrate that a simple stochastic model, with just a handful of parameters, can provide fundamental insights into the biological underpinnings of cell cycle progression.

Suggested Citation

  • Zack W Jones & Rachel Leander & Vito Quaranta & Leonard A Harris & Darren R Tyson, 2018. "A drift-diffusion checkpoint model predicts a highly variable and growth-factor-sensitive portion of the cell cycle G1 phase," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-20, February.
  • Handle: RePEc:plo:pone00:0192087
    DOI: 10.1371/journal.pone.0192087
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192087
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0192087&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0192087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hee Won Yang & Mingyu Chung & Takamasa Kudo & Tobias Meyer, 2017. "Competing memories of mitogen and p53 signalling control cell-cycle entry," Nature, Nature, vol. 549(7672), pages 404-408, September.
    2. Anton Zilman & Vitaly V Ganusov & Alan S Perelson, 2010. "Stochastic Models of Lymphocyte Proliferation and Death," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-14, September.
    3. Ryan N Gutenkunst & Joshua J Waterfall & Fergal P Casey & Kevin S Brown & Christopher R Myers & James P Sethna, 2007. "Universally Sloppy Parameter Sensitivities in Systems Biology Models," PLOS Computational Biology, Public Library of Science, vol. 3(10), pages 1-8, October.
    4. Tom Serge Weber & Irene Jaehnert & Christian Schichor & Michal Or-Guil & Jorge Carneiro, 2014. "Quantifying the Length and Variance of the Eukaryotic Cell Cycle Phases by a Stochastic Model and Dual Nucleoside Pulse Labelling," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    2. Samuel Bandara & Johannes P Schlöder & Roland Eils & Hans Georg Bock & Tobias Meyer, 2009. "Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-12, November.
    3. Adel Dayarian & Madalena Chaves & Eduardo D Sontag & Anirvan M Sengupta, 2009. "Shape, Size, and Robustness: Feasible Regions in the Parameter Space of Biochemical Networks," PLOS Computational Biology, Public Library of Science, vol. 5(1), pages 1-12, January.
    4. Amrita X Sarkar & Eric A Sobie, 2010. "Regression Analysis for Constraining Free Parameters in Electrophysiological Models of Cardiac Cells," PLOS Computational Biology, Public Library of Science, vol. 6(9), pages 1-11, September.
    5. Hongwei Shao & Tao Peng & Zhiwei Ji & Jing Su & Xiaobo Zhou, 2013. "Systematically Studying Kinase Inhibitor Induced Signaling Network Signatures by Integrating Both Therapeutic and Side Effects," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-16, December.
    6. Alireza Yazdani & Lu Lu & Maziar Raissi & George Em Karniadakis, 2020. "Systems biology informed deep learning for inferring parameters and hidden dynamics," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-19, November.
    7. Fridtjof Brauns & Leila Iñigo de la Cruz & Werner K.-G. Daalman & Ilse Bruin & Jacob Halatek & Liedewij Laan & Erwin Frey, 2023. "Redundancy and the role of protein copy numbers in the cell polarization machinery of budding yeast," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Eberhard O Voit & Harald A Martens & Stig W Omholt, 2015. "150 Years of the Mass Action Law," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-7, January.
    9. Céline Christiansen-Jucht & Kamil Erguler & Chee Yan Shek & María-Gloria Basáñez & Paul E. Parham, 2015. "Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival," IJERPH, MDPI, vol. 12(6), pages 1-31, May.
    10. Gabriele Lillacci & Mustafa Khammash, 2010. "Parameter Estimation and Model Selection in Computational Biology," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-17, March.
    11. Andrew White & Malachi Tolman & Howard D Thames & Hubert Rodney Withers & Kathy A Mason & Mark K Transtrum, 2016. "The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-26, December.
    12. Diego Fernández Slezak & Cecilia Suárez & Guillermo A Cecchi & Guillermo Marshall & Gustavo Stolovitzky, 2010. "When the Optimal Is Not the Best: Parameter Estimation in Complex Biological Models," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-10, October.
    13. Elba Raimúndez & Simone Keller & Gwen Zwingenberger & Karolin Ebert & Sabine Hug & Fabian J Theis & Dieter Maier & Birgit Luber & Jan Hasenauer, 2020. "Model-based analysis of response and resistance factors of cetuximab treatment in gastric cancer cell lines," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-21, March.
    14. Joseph D Taylor & Samuel Winnall & Alain Nogaret, 2020. "Estimation of neuron parameters from imperfect observations," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-22, July.
    15. Xinxian Shao & Andrew Mugler & Justin Kim & Ha Jun Jeong & Bruce R Levin & Ilya Nemenman, 2017. "Growth of bacteria in 3-d colonies," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-19, July.
    16. Maksat Ashyraliyev & Ken Siggens & Hilde Janssens & Joke Blom & Michael Akam & Johannes Jaeger, 2009. "Gene Circuit Analysis of the Terminal Gap Gene huckebein," PLOS Computational Biology, Public Library of Science, vol. 5(10), pages 1-16, October.
    17. Leighton H. Daigh & Debarya Saha & David L. Rosenthal & Katherine R. Ferrick & Tobias Meyer, 2024. "Uncoupling of mTORC1 from E2F activity maintains DNA damage and senescence," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Debasish Paul & Stephen C. Kales & James A. Cornwell & Marwa M. Afifi & Ganesha Rai & Alexey Zakharov & Anton Simeonov & Steven D. Cappell, 2022. "Revealing β-TrCP activity dynamics in live cells with a genetically encoded biosensor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Agus Hartoyo & Peter J Cadusch & David T J Liley & Damien G Hicks, 2019. "Parameter estimation and identifiability in a neural population model for electro-cortical activity," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-27, May.
    20. Christian A Tiemann & Joep Vanlier & Maaike H Oosterveer & Albert K Groen & Peter A J Hilbers & Natal A W van Riel, 2013. "Parameter Trajectory Analysis to Identify Treatment Effects of Pharmacological Interventions," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-15, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0192087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.