IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0191863.html
   My bibliography  Save this article

Predicting financial trouble using call data—On social capital, phone logs, and financial trouble

Author

Listed:
  • Rishav Raj Agarwal
  • Chia-Ching Lin
  • Kuan-Ta Chen
  • Vivek Kumar Singh

Abstract

An ability to understand and predict financial wellbeing for individuals is of interest to economists, policy designers, financial institutions, and the individuals themselves. According to the Nilson reports, there were more than 3 billion credit cards in use in 2013, accounting for purchases exceeding US$ 2.2 trillion, and according to the Federal Reserve report, 39% of American households were carrying credit card debt from month to month. Prior literature has connected individual financial wellbeing with social capital. However, as yet, there is limited empirical evidence connecting social interaction behavior with financial outcomes. This work reports results from one of the largest known studies connecting financial outcomes and phone-based social behavior (180,000 individuals; 2 years’ time frame; 82.2 million monthly bills, and 350 million call logs). Our methodology tackles highly imbalanced dataset, which is a pertinent problem with modelling credit risk behavior, and offers a novel hybrid method that yields improvements over, both, a traditional transaction data only approach, and an approach that uses only call data. The results pave way for better financial modelling of billions of unbanked and underbanked customers using non-traditional metrics like phone-based credit scoring.

Suggested Citation

  • Rishav Raj Agarwal & Chia-Ching Lin & Kuan-Ta Chen & Vivek Kumar Singh, 2018. "Predicting financial trouble using call data—On social capital, phone logs, and financial trouble," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-17, February.
  • Handle: RePEc:plo:pone00:0191863
    DOI: 10.1371/journal.pone.0191863
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191863
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0191863&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0191863?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bart Baesens & Rudy Setiono & Christophe Mues & Jan Vanthienen, 2003. "Using Neural Network Rule Extraction and Decision Tables for Credit-Risk Evaluation," Management Science, INFORMS, vol. 49(3), pages 312-329, March.
    2. Thomas, Lyn C., 2000. "A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers," International Journal of Forecasting, Elsevier, vol. 16(2), pages 149-172.
    3. Stanislav Sobolevsky & Izabela Sitko & Remi Tachet des Combes & Bartosz Hawelka & Juan Murillo Arias & Carlo Ratti, 2016. "Cities through the Prism of People’s Spending Behavior," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-19, February.
    4. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    5. Michele Coscia & Ricardo Hausmann, 2015. "Evidence That Calls-Based and Mobility Networks Are Isomorphic," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-15, December.
    6. Vivek Kumar Singh & Burcin Bozkaya & Alex Pentland, 2015. "Money Walks: Implicit Mobility Behavior and Financial Well-Being," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-17, August.
    7. Agarwal, Sumit & Chomsisengphet, Souphala & Liu, Chunlin, 2011. "Consumer bankruptcy and default: The role of individual social capital," Journal of Economic Psychology, Elsevier, vol. 32(4), pages 632-650, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ting Sun & Miklos A. Vasarhelyi, 2018. "Predicting credit card delinquencies: An application of deep neural networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 25(4), pages 174-189, October.
    2. Brad S. Trinkle & Amelia A. Baldwin, 2016. "Research Opportunities for Neural Networks: The Case for Credit," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 23(3), pages 240-254, July.
    3. Cagan Urkup & Burcin Bozkaya & F Sibel Salman, 2018. "Customer mobility signatures and financial indicators as predictors in product recommendation," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-18, July.
    4. Zhou, Ying & Shen, Long & Ballester, Laura, 2023. "A two-stage credit scoring model based on random forest: Evidence from Chinese small firms," International Review of Financial Analysis, Elsevier, vol. 89(C).
    5. Saiz, Albert & Salazar-Miranda, Arianna, 2023. "Understanding Urban Economies, Land Use, and Social Dynamics in the City: Big Data and Measurement," IZA Discussion Papers 16501, Institute of Labor Economics (IZA).
    6. Brad S. Trinkle & Amelia A. Baldwin, 2007. "Interpretable credit model development via artificial neural networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(3‐4), pages 123-147, July.
    7. L C Thomas, 2010. "Consumer finance: challenges for operational research," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 41-52, January.
    8. Vivek Kumar Singh & Burcin Bozkaya & Alex Pentland, 2015. "Money Walks: Implicit Mobility Behavior and Financial Well-Being," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-17, August.
    9. Dinh, K. & Kleimeier, S., 2006. "Credit scoring for Vietnam's retail banking market : implementation and implications for transactional versus relationship lending," Research Memorandum 012, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    10. Hoffmann, F. & Baesens, B. & Mues, C. & Van Gestel, T. & Vanthienen, J., 2007. "Inferring descriptive and approximate fuzzy rules for credit scoring using evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 177(1), pages 540-555, February.
    11. Jeong-Hui Park & Eunhye Yoo & Youngdeok Kim & Jung-Min Lee, 2021. "What Happened Pre- and during COVID-19 in South Korea? Comparing Physical Activity, Sleep Time, and Body Weight Status," IJERPH, MDPI, vol. 18(11), pages 1-13, May.
    12. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    13. Su, Rongxiang & Xiao, Jingyi & McBride, Elizabeth C. & Goulias, Konstadinos G., 2021. "Understanding senior's daily mobility patterns in California using human mobility motifs," Journal of Transport Geography, Elsevier, vol. 94(C).
    14. Robert Stewart & Marie Urban & Samantha Duchscherer & Jason Kaufman & April Morton & Gautam Thakur & Jesse Piburn & Jessica Moehl, 2016. "A Bayesian machine learning model for estimating building occupancy from open source data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1929-1956, April.
    15. Arroyo Arroyo,Fatima & Fernandez Gonzalez,Marta & Matekenya,Dunstan & Espinet Alegre,Xavier, 2021. "Using Mobile Data to Understand Urban Mobility Patterns in Freetown, Sierra Leone," Policy Research Working Paper Series 9519, The World Bank.
    16. David Kofoed Wind & Piotr Sapiezynski & Magdalena Anna Furman & Sune Lehmann, 2016. "Inferring Stop-Locations from WiFi," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-15, February.
    17. Kwon, He-Boong & Lee, Jooh, 2019. "Exploring the differential impact of environmental sustainability, operational efficiency, and corporate reputation on market valuation in high-tech-oriented firms," International Journal of Production Economics, Elsevier, vol. 211(C), pages 1-14.
    18. Martens, David & Baesens, Bart & Van Gestel, Tony & Vanthienen, Jan, 2007. "Comprehensible credit scoring models using rule extraction from support vector machines," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1466-1476, December.
    19. Zhou, Xingang & Yeh, Anthony G.O. & Yue, Yang, 2018. "Spatial variation of self-containment and jobs-housing balance in Shenzhen using cellphone big data," Journal of Transport Geography, Elsevier, vol. 68(C), pages 102-108.
    20. Maxime Lenormand & Miguel Picornell & Oliva G Cantú-Ros & Antònia Tugores & Thomas Louail & Ricardo Herranz & Marc Barthelemy & Enrique Frías-Martínez & José J Ramasco, 2014. "Cross-Checking Different Sources of Mobility Information," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-10, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0191863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.