IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0190658.html
   My bibliography  Save this article

Computational study of HIV gp120 as a target for polyanionic entry inhibitors: Exploiting the V3 loop region

Author

Listed:
  • Louis R Hollingsworth IV
  • Anne M Brown
  • Richard D Gandour
  • David R Bevan

Abstract

Multiple approaches are being utilized to develop therapeutics to treat HIV infection. One approach is designed to inhibit entry of HIV into host cells, with a target being the viral envelope glycoprotein, gp120. Polyanionic compounds have been shown to be effective in inhibiting HIV entry, with a mechanism involving electrostatic interactions with the V3 loop of gp120 being proposed. In this study, we applied computational methods to elucidate molecular interactions between the repeat unit of the precisely alternating polyanion, Poly(4,4′-stilbenedicarboxylate-alt–maleic acid) (DCSti-alt-MA) and the V3 loop of gp120 from strains of HIV against which these polyanions were previously tested (IIIb, BaL, 92UG037, JR-CSF) as well as two strains for which gp120 crystal structures are available (YU2, 2B4C). Homology modeling was used to create models of the gp120 proteins. Using monomers of the gp120 protein, we applied extensive molecular dynamics simulations to obtain dominant morphologies that represent a variety of open-closed states of the V3 loop to examine the interaction of 112 ligands of the repeating units of DCSti-alt-MA docked to the V3 loop and surrounding residues. Using the distance between the V1/V2 and V3 loops of gp120 as a metric, we revealed through MD simulations that gp120 from the lab-adapted strains (BaL and IIIb), which are more susceptible to inhibition by DCSti-alt-MA, clearly transitioned to the closed state in one replicate of each simulation set, whereas none of the replicates from the Tier II strains (92UG037 and JR-CSF) did so. Docking repeat unit microspecies to the gp120 protein before and after MD simulation enabled identification of residues that were key for binding. Notably, only a few residues were found to be important for docking both before and after MD simulation as a result of the conformational heterogeneity provided by the simulations. Consideration of the residues that were consistently involved in interactions with the ligand revealed the importance of both hydrophilic and hydrophobic moieties of the ligand for effective binding. The results also suggest that polymers of DCSti-alt-MA with repeating units of different configurations may have advantages for therapeutic efficacy.

Suggested Citation

  • Louis R Hollingsworth IV & Anne M Brown & Richard D Gandour & David R Bevan, 2018. "Computational study of HIV gp120 as a target for polyanionic entry inhibitors: Exploiting the V3 loop region," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-22, January.
  • Handle: RePEc:plo:pone00:0190658
    DOI: 10.1371/journal.pone.0190658
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0190658
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0190658&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0190658?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katherine Henzler-Wildman & Dorothee Kern, 2007. "Dynamic personalities of proteins," Nature, Nature, vol. 450(7172), pages 964-972, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. César Augusto F de Oliveira & Barry J Grant & Michelle Zhou & J Andrew McCammon, 2011. "Large-Scale Conformational Changes of Trypanosoma cruzi Proline Racemase Predicted by Accelerated Molecular Dynamics Simulation," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-7, October.
    2. Sean L Seyler & Avishek Kumar & M F Thorpe & Oliver Beckstein, 2015. "Path Similarity Analysis: A Method for Quantifying Macromolecular Pathways," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-37, October.
    3. Jonathan Schubert & Andrea Schulze & Chrisostomos Prodromou & Hannes Neuweiler, 2021. "Two-colour single-molecule photoinduced electron transfer fluorescence imaging microscopy of chaperone dynamics," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Alistair Bailey & Andy van Hateren & Tim Elliott & Jörn M Werner, 2014. "Two Polymorphisms Facilitate Differences in Plasticity between Two Chicken Major Histocompatibility Complex Class I Proteins," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-11, February.
    5. Feiyu Zhao & Tao Zhang & Xiaodi Sun & Xiyun Zhang & Letong Chen & Hejun Wang & Jinze Li & Peng Fan & Liangxue Lai & Tingting Sui & Zhanjun Li, 2023. "A strategy for Cas13 miniaturization based on the structure and AlphaFold," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Yi-Ling Chen & Michael Habeck, 2017. "Data-driven coarse graining of large biomolecular structures," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-17, August.
    7. Li Zhao & Wenzhao Li & Pu Tian, 2013. "Reconciling Mediating and Slaving Roles of Water in Protein Conformational Dynamics," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-7, April.
    8. Seonggon Lee & Hosung Ki & Donghwan Im & Jungmin Kim & Yunbeom Lee & Jain Gu & Alekos Segalina & Jun Heo & Yongjun Cha & Kyung Won Lee & Doyeong Kim & Jeongho Kim & Rory Ma & Jae Hyuk Lee & Hyotcherl , 2025. "Ultrafast structural dynamics of carbon–carbon single-bond rotation in transient radical species at non-equilibrium," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    9. Kee-Hyun Choi & Stuart Licht, 2012. "ATP-Sensitive Potassium Channels Exhibit Variance in the Number of Open Channels below the Limit Predicted for Identical and Independent Gating," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-6, May.
    10. Tobias Linder & Bert L de Groot & Anna Stary-Weinzinger, 2013. "Probing the Energy Landscape of Activation Gating of the Bacterial Potassium Channel KcsA," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-9, May.
    11. Markus Götz & Anders Barth & Søren S.-R. Bohr & Richard Börner & Jixin Chen & Thorben Cordes & Dorothy A. Erie & Christian Gebhardt & Mélodie C. A. S. Hadzic & George L. Hamilton & Nikos S. Hatzakis &, 2022. "A blind benchmark of analysis tools to infer kinetic rate constants from single-molecule FRET trajectories," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Jian-Hua Wang & Yu-Liang Tang & Zhou Gong & Rohit Jain & Fan Xiao & Yu Zhou & Dan Tan & Qiang Li & Niu Huang & Shu-Qun Liu & Keqiong Ye & Chun Tang & Meng-Qiu Dong & Xiaoguang Lei, 2022. "Characterization of protein unfolding by fast cross-linking mass spectrometry using di-ortho-phthalaldehyde cross-linkers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Eugene Klyshko & Justin Sung-Ho Kim & Lauren McGough & Victoria Valeeva & Ethan Lee & Rama Ranganathan & Sarah Rauscher, 2024. "Functional protein dynamics in a crystal," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Antony D. St-Jacques & Joshua M. Rodriguez & Matthew G. Eason & Scott M. Foster & Safwat T. Khan & Adam M. Damry & Natalie K. Goto & Michael C. Thompson & Roberto A. Chica, 2023. "Computational remodeling of an enzyme conformational landscape for altered substrate selectivity," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Karain, Wael I., 2019. "Investigating large-amplitude protein loop motions as extreme events using recurrence interval analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 1-10.
    16. Huiyu Li & Ao Ma, 2025. "Enhanced sampling of protein conformational changes via true reaction coordinates from energy relaxation," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    17. L Michel Espinoza-Fonseca & David D Thomas, 2011. "Atomic-Level Characterization of the Activation Mechanism of SERCA by Calcium," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-7, October.
    18. Barak Raveh & Angela Enosh & Ora Schueler-Furman & Dan Halperin, 2009. "Rapid Sampling of Molecular Motions with Prior Information Constraints," PLOS Computational Biology, Public Library of Science, vol. 5(2), pages 1-17, February.
    19. Kalyan S. Chakrabarti & Simon Olsson & Supriya Pratihar & Karin Giller & Kerstin Overkamp & Ko On Lee & Vytautas Gapsys & Kyoung-Seok Ryu & Bert L. Groot & Frank Noé & Stefan Becker & Donghan Lee & Th, 2022. "A litmus test for classifying recognition mechanisms of transiently binding proteins," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Maciej Majewski & Adrià Pérez & Philipp Thölke & Stefan Doerr & Nicholas E. Charron & Toni Giorgino & Brooke E. Husic & Cecilia Clementi & Frank Noé & Gianni Fabritiis, 2023. "Machine learning coarse-grained potentials of protein thermodynamics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0190658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.