IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0180075.html
   My bibliography  Save this article

Effectiveness of rapid rail transit system in Beijing

Author

Listed:
  • Hui-Min Cheng
  • Yi-Zi Ning
  • Xiaoke Ma
  • Xin Liu
  • Zhong-Yuan Zhang

Abstract

The effectiveness of rapid rail transit system is analyzed using tools of complex network for the first time. We evaluated the effectiveness of the system in Beijing quantitatively from different perspectives, including descriptive statistics analysis, bridging property, centrality property, ability of connecting different part of the system and ability of disease spreading. The results showed that the public transport of Beijing does benefit from the rapid rail transit lines, and the benefit of different regions from RRTS is gradually decreased from the north to the south. The paper concluded with some policy suggestions regarding how to promote the system. This study offered significant insight that can help understand the public transportation better. The methodology can be easily applied to analyze other urban public systems, such as electricity grid, water system, to develop more livable cities.

Suggested Citation

  • Hui-Min Cheng & Yi-Zi Ning & Xiaoke Ma & Xin Liu & Zhong-Yuan Zhang, 2017. "Effectiveness of rapid rail transit system in Beijing," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-13, July.
  • Handle: RePEc:plo:pone00:0180075
    DOI: 10.1371/journal.pone.0180075
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180075
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0180075&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0180075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Weihua Dong & Zhao Liu & Lijie Zhang & Qiuhong Tang & Hua Liao & Xian'en Li, 2014. "Assessing Heat Health Risk for Sustainability in Beijing’s Urban Heat Island," Sustainability, MDPI, vol. 6(10), pages 1-24, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Liu & Zhenwu Shi & Dan Wang, 2016. "Measuring and mapping the flood vulnerability based on land-use patterns: a case study of Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1545-1565, September.
    2. Jeong-Hee Eum & Kwon Kim & Eung-Ho Jung & Paikho Rho, 2018. "Evaluation and Utilization of Thermal Environment Associated with Policy: A Case Study of Daegu Metropolitan City in South Korea," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    3. Wei Zhang & Qianxing Zhao & Minjie Pei, 2021. "How much uncertainty does the choice of data transforming method brings to heat risk mapping? Evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 349-373, March.
    4. Fei Li & Tan Yigitcanlar & Madhav Nepal & Kien Nguyen Thanh & Fatih Dur, 2022. "Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review," Energies, MDPI, vol. 15(19), pages 1-34, September.
    5. Jinling Quan, 2019. "Multi-Temporal Effects of Urban Forms and Functions on Urban Heat Islands Based on Local Climate Zone Classification," IJERPH, MDPI, vol. 16(12), pages 1-35, June.
    6. Guoyong Leng & Qiuhong Tang & Shengzhi Huang & Xuejun Zhang, 2016. "Extreme hot summers in China in the CMIP5 climate models," Climatic Change, Springer, vol. 135(3), pages 669-681, April.
    7. Albert Ayorinde Abegunde, 2017. "Local communities’ belief in climate change in a rural region of Sub-Saharan Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(4), pages 1489-1522, August.
    8. Wei Zhang & Phil McManus & Elizabeth Duncan, 2018. "A Raster-Based Subdividing Indicator to Map Urban Heat Vulnerability: A Case Study in Sydney, Australia," IJERPH, MDPI, vol. 15(11), pages 1-20, November.
    9. Huan Xie & Fang Wang & Yali Gong & Xiaohua Tong & Yanmin Jin & Ang Zhao & Chao Wei & Xinyi Zhang & Shicheng Liao, 2022. "Spatially Balanced Sampling for Validation of GlobeLand30 Using Landscape Pattern-Based Inclusion Probability," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    10. Milan Trifković & Miroslav Kuburić & Žarko Nestorović & Goca Jovanović & Milan Kekanović, 2021. "The Attractiveness of Urban Complexes: Economic Aspect and Risks of Environmental Pollution," Sustainability, MDPI, vol. 13(14), pages 1-13, July.
    11. Weihua Dong & Zhao Liu & Hua Liao & Qiuhong Tang & Xian’en Li, 2015. "New climate and socio-economic scenarios for assessing global human health challenges due to heat risk," Climatic Change, Springer, vol. 130(4), pages 505-518, June.
    12. You Jin Kwon & Dong Kun Lee & You Ha Kwon, 2020. "Is Sensible Heat Flux Useful for the Assessment of Thermal Vulnerability in Seoul (Korea)?," IJERPH, MDPI, vol. 17(3), pages 1-26, February.
    13. Zhi Cai & Yan Tang & Kai Chen & Guifeng Han, 2019. "Assessing the Heat Vulnerability of Different Local Climate Zones in the Old Areas of a Chinese Megacity," Sustainability, MDPI, vol. 11(7), pages 1-15, April.
    14. Peng Ren & Xinxin Zhang & Haoyan Liang & Qinglin Meng, 2019. "Assessing the Impact of Land Cover Changes on Surface Urban Heat Islands with High-Spatial-Resolution Imagery on a Local Scale: Workflow and Case Study," Sustainability, MDPI, vol. 11(19), pages 1-24, September.
    15. Xiaoyong Li & Wenhui Kuang & Fengyun Sun, 2020. "Identifying Urban Flood Regulation Priority Areas in Beijing Based on an Ecosystem Services Approach," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    16. Dongwoo Lee & Kyushik Oh & Jungeun Suh, 2022. "Diagnosis and Prioritization of Vulnerable Areas of Urban Ecosystem Regulation Services," Land, MDPI, vol. 11(10), pages 1-22, October.
    17. Nawhath Thanvisitthpon, 2023. "Statistically Validated Urban Heat Island Risk Indicators for UHI Susceptibility Assessment," IJERPH, MDPI, vol. 20(2), pages 1-21, January.
    18. Giacomo Chiesa & Yingyue Li, 2021. "Including Urban Heat Island in Bioclimatic Early-Design Phases: A Simplified Methodology and Sample Applications," Sustainability, MDPI, vol. 13(11), pages 1-28, May.
    19. Minxuan Zheng & Jiahua Zhang & Lamei Shi & Da Zhang & Til Prasad Pangali Sharma & Foyez Ahmed Prodhan, 2020. "Mapping Heat-Related Risks in Northern Jiangxi Province of China Based on Two Spatial Assessment Frameworks Approaches," IJERPH, MDPI, vol. 17(18), pages 1-24, September.
    20. Junzhe Bao & Xudong Li & Chuanhua Yu, 2015. "The Construction and Validation of the Heat Vulnerability Index, a Review," IJERPH, MDPI, vol. 12(7), pages 1-15, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0180075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.