IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0179530.html
   My bibliography  Save this article

RRmix: A method for simultaneous batch effect correction and analysis of metabolomics data in the absence of internal standards

Author

Listed:
  • Stephen Salerno Jr.
  • Mahya Mehrmohamadi
  • Maria V Liberti
  • Muting Wan
  • Martin T Wells
  • James G Booth
  • Jason W Locasale

Abstract

With the surge of interest in metabolism and the appreciation of its diverse roles in numerous biomedical contexts, the number of metabolomics studies using liquid chromatography coupled to mass spectrometry (LC-MS) approaches has increased dramatically in recent years. However, variation that occurs independently of biological signal and noise (i.e. batch effects) in metabolomics data can be substantial. Standard protocols for data normalization that allow for cross-study comparisons are lacking. Here, we investigate a number of algorithms for batch effect correction and differential abundance analysis, and compare their performance. We show that linear mixed effects models, which account for latent (i.e. not directly measurable) factors, produce satisfactory results in the presence of batch effects without the need for internal controls or prior knowledge about the nature and sources of unwanted variation in metabolomics data. We further introduce an algorithm—RRmix—within the family of latent factor models and illustrate its suitability for differential abundance analysis in the presence of strong batch effects. Together this analysis provides a framework for systematically standardizing metabolomics data.

Suggested Citation

  • Stephen Salerno Jr. & Mahya Mehrmohamadi & Maria V Liberti & Muting Wan & Martin T Wells & James G Booth & Jason W Locasale, 2017. "RRmix: A method for simultaneous batch effect correction and analysis of metabolomics data in the absence of internal standards," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-19, June.
  • Handle: RePEc:plo:pone00:0179530
    DOI: 10.1371/journal.pone.0179530
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179530
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0179530&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0179530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Smyth Gordon K, 2004. "Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-28, February.
    2. Causeur, David & Friguet, Chloe & Houee-Bigot, Magalie & Kloareg, Maela, 2011. "Factor Analysis for Multiple Testing (FAMT): An R Package for Large-Scale Significance Testing under Dependence," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i14).
    3. Jeffrey T Leek & John D Storey, 2007. "Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis," PLOS Genetics, Public Library of Science, vol. 3(9), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chee Ho H’ng & Shanika L. Amarasinghe & Boya Zhang & Hojin Chang & Xinli Qu & David R. Powell & Alberto Rosello-Diez, 2024. "Compensatory growth and recovery of cartilage cytoarchitecture after transient cell death in fetal mouse limbs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Leek Jeffrey T & Storey John D., 2011. "The Joint Null Criterion for Multiple Hypothesis Tests," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, June.
    3. Kynon J. M. Benjamin & Ria Arora & Arthur S. Feltrin & Geo Pertea & Hunter H. Giles & Joshua M. Stolz & Laura D’Ignazio & Leonardo Collado-Torres & Joo Heon Shin & William S. Ulrich & Thomas M. Hyde &, 2024. "Sex affects transcriptional associations with schizophrenia across the dorsolateral prefrontal cortex, hippocampus, and caudate nucleus," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Aaron C Ericsson & J Wade Davis & William Spollen & Nathan Bivens & Scott Givan & Catherine E Hagan & Mark McIntosh & Craig L Franklin, 2015. "Effects of Vendor and Genetic Background on the Composition of the Fecal Microbiota of Inbred Mice," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-19, February.
    5. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    6. Xiaohong Li & Guy N Brock & Eric C Rouchka & Nigel G F Cooper & Dongfeng Wu & Timothy E O’Toole & Ryan S Gill & Abdallah M Eteleeb & Liz O’Brien & Shesh N Rai, 2017. "A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-22, May.
    7. Kerr Kathleen F., 2012. "Optimality Criteria for the Design of 2-Color Microarray Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-9, January.
    8. Ambroise Jérôme & Bearzatto Bertrand & Robert Annie & Macq Benoit & Gala Jean-Luc, 2012. "Combining Multiple Laser Scans of Spotted Microarrays by Means of a Two-Way ANOVA Model," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-20, February.
    9. J. McClatchy & R. Strogantsev & E. Wolfe & H. Y. Lin & M. Mohammadhosseini & B. A. Davis & C. Eden & D. Goldman & W. H. Fleming & P. Conley & G. Wu & L. Cimmino & H. Mohammed & A. Agarwal, 2023. "Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Alexandra Gyurdieva & Stefan Zajic & Ya-Fang Chang & E. Andres Houseman & Shan Zhong & Jaegil Kim & Michael Nathenson & Thomas Faitg & Mary Woessner & David C. Turner & Aisha N. Hasan & John Glod & Ro, 2022. "Biomarker correlates with response to NY-ESO-1 TCR T cells in patients with synovial sarcoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    11. Sora Yoon & Seon-Young Kim & Dougu Nam, 2016. "Improving Gene-Set Enrichment Analysis of RNA-Seq Data with Small Replicates," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-16, November.
    12. Yu Lianbo & Gulati Parul & Fernandez Soledad & Pennell Michael & Kirschner Lawrence & Jarjoura David, 2011. "Fully Moderated T-statistic for Small Sample Size Gene Expression Arrays," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, September.
    13. Sinan Xiong & Jianbiao Zhou & Tze King Tan & Tae-Hoon Chung & Tuan Zea Tan & Sabrina Hui-Min Toh & Nicole Xin Ning Tang & Yunlu Jia & Yi Xiang See & Melissa Jane Fullwood & Takaomi Sanda & Wee-Joo Chn, 2024. "Super enhancer acquisition drives expression of oncogenic PPP1R15B that regulates protein homeostasis in multiple myeloma," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    14. Arjun Bhattacharya & Anastasia N. Freedman & Vennela Avula & Rebeca Harris & Weifang Liu & Calvin Pan & Aldons J. Lusis & Robert M. Joseph & Lisa Smeester & Hadley J. Hartwell & Karl C. K. Kuban & Car, 2022. "Placental genomics mediates genetic associations with complex health traits and disease," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Chaofeng Yuan & Wensheng Zhu & Xuming He & Jianhua Guo, 2019. "A mixture factor model with applications to microarray data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 60-76, March.
    16. Nan Li & Matthew N. McCall & Zhijin Wu, 2017. "Establishing Informative Prior for Gene Expression Variance from Public Databases," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 160-177, June.
    17. Brian Caffo & Liu Dongmei & Giovanni Parmigiani, 2004. "Power Conjugate Multilevel Models with Applications to Genomics," Johns Hopkins University Dept. of Biostatistics Working Paper Series 1062, Berkeley Electronic Press.
    18. Nott, David J. & Yu, Zeming & Chan, Eva & Cotsapas, Chris & Cowley, Mark J. & Pulvers, Jeremy & Williams, Rohan & Little, Peter, 2007. "Hierarchical Bayes variable selection and microarray experiments," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 852-872, April.
    19. Santu Ghosh & Alan M. Polansky, 2022. "Large-Scale Simultaneous Testing Using Kernel Density Estimation," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 808-843, August.
    20. Qianxing Mo & Faming Liang, 2010. "Bayesian Modeling of ChIP-chip Data Through a High-Order Ising Model," Biometrics, The International Biometric Society, vol. 66(4), pages 1284-1294, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0179530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.