IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0177552.html
   My bibliography  Save this article

Recent tree cover increases in eastern China linked to low, declining human pressure, steep topography, and climatic conditions favoring tree growth

Author

Listed:
  • Jonas Nüchel
  • Jens-Christian Svenning

Abstract

Globally, the extent of forest continues to decline, however, some countries have increased their forest extent in recent years. China is one of these countries and has managed to increase their tree cover through huge reforestation and afforestation programs during recent decades as well as land abandonment dynamics. This study investigates tree cover change in the eastern half of China between 2000 and 2010 on three different scales, using random forest modeling of remote sensing data for tree cover in relation to environmental and anthropogenic predictor variables. Our results show that between the years 2000 and 2010 2,667,875 km2 experienced an increase in tree cover while 1,854,900 km2 experienced a decline in tree cover. The area experiencing ≥10% increase in tree cover is almost twice as large as the area with ≥10% drop in tree cover. There is a clear relation between topography and tree cover change with steeper and mid-elevation areas having a larger response on tree cover increase than other areas. Furthermore, human influence, change in population density, and actual evapotranspiration are also important factors in explaining where tree cover has changed. This study adds to the understanding of tree cover change in China, as it has focus on the entire eastern half of China on three different scales and how tree cover change is linked to topography and anthropogenic pressure. Though, our results show an increase in tree cover in China, this study emphasizes the importance of incorporating anthropogenic factors together with biodiversity protection into the reforestation and afforestation programs in the future.

Suggested Citation

  • Jonas Nüchel & Jens-Christian Svenning, 2017. "Recent tree cover increases in eastern China linked to low, declining human pressure, steep topography, and climatic conditions favoring tree growth," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-19, June.
  • Handle: RePEc:plo:pone00:0177552
    DOI: 10.1371/journal.pone.0177552
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177552
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0177552&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0177552?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shiqiang Du & Peijun Shi & Anton Van Rompaey, 2013. "The Relationship between Urban Sprawl and Farmland Displacement in the Pearl River Delta, China," Land, MDPI, vol. 3(1), pages 1-18, December.
    2. Brody Sandel & Jens-Christian Svenning, 2013. "Human impacts drive a global topographic signature in tree cover," Nature Communications, Nature, vol. 4(1), pages 1-7, December.
    3. Huafang Chen & Zhuang-Fang Yi & Dietrich Schmidt-Vogt & Antje Ahrends & Philip Beckschäfer & Christoph Kleinn & Sailesh Ranjitkar & Jianchu Xu, 2016. "Pushing the Limits: The Pattern and Dynamics of Rubber Monoculture Expansion in Xishuangbanna, SW China," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Muhammad Fadzli & Akber, Md. Ali & Smith, Carl & Aziz, Ammar Abdul, 2021. "The dynamics of rubber production in Malaysia: Potential impacts, challenges and proposed interventions," Forest Policy and Economics, Elsevier, vol. 127(C).
    2. Ma, X. & Lacombe, Guillaume & Harrison, R. & Xu, J. & van Noordwijk, M., 2019. "Expanding rubber plantations in southern China: evidence for hydrological impacts," Papers published in Journals (Open Access), International Water Management Institute, pages 11(4):1-15..
    3. Kevin Thellmann & Marc Cotter & Sabine Baumgartner & Anna Treydte & Georg Cadisch & Folkard Asch, 2018. "Tipping Points in the Supply of Ecosystem Services of a Mountainous Watershed in Southeast Asia," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    4. Kun Li & Mengyuan Zhang & Yilun Li & Xiaoyi Xing & Shuxin Fan & Yu Cao & Li Dong & Desheng Chen, 2020. "Karren Habitat as the Key in Influencing Plant Distribution and Species Diversity in Shilin Geopark, Southwest China," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
    5. Changjun Gu & Pei Zhao & Qiong Chen & Shicheng Li & Lanhui Li & Linshan Liu & Yili Zhang, 2020. "Forest Cover Change and the Effectiveness of Protected Areas in the Himalaya since 1998," Sustainability, MDPI, vol. 12(15), pages 1-24, July.
    6. Gregory Duveiller & Federico Filipponi & Andrej Ceglar & Jędrzej Bojanowski & Ramdane Alkama & Alessandro Cescatti, 2021. "Revealing the widespread potential of forests to increase low level cloud cover," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    7. Nobuo Imai & Takuya Furukawa & Riyou Tsujino & Shumpei Kitamura & Takakazu Yumoto, 2018. "Factors affecting forest area change in Southeast Asia during 1980-2010," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-14, May.
    8. Jennifer Hewson & Stefano C. Crema & Mariano González-Roglich & Karyn Tabor & Celia A. Harvey, 2019. "New 1 km Resolution Datasets of Global and Regional Risks of Tree Cover Loss," Land, MDPI, vol. 8(1), pages 1-14, January.
    9. Kerri Lu & Stephen Bates & Sherrie Wang, 2024. "Quantifying uncertainty in area and regression coefficient estimation from remote sensing maps," Papers 2407.13659, arXiv.org, revised Sep 2024.
    10. Jue Wang & Haiwei Jiang & Yuan He, 2023. "Determinants of Smallholder Farmers’ Income-Generating Activities in Rubber Monoculture Dominated Region Based on Sustainable Livelihood Framework," Land, MDPI, vol. 12(2), pages 1-17, January.
    11. Vincenzo Restivo & Achille Cernigliaro & Alessandra Casuccio, 2019. "Urban Sprawl and Health Outcome Associations in Sicily," IJERPH, MDPI, vol. 16(8), pages 1-9, April.
    12. Zaheer Abbas & Guang Yang & Yuanjun Zhong & Yaolong Zhao, 2021. "Spatiotemporal Change Analysis and Future Scenario of LULC Using the CA-ANN Approach: A Case Study of the Greater Bay Area, China," Land, MDPI, vol. 10(6), pages 1-26, June.
    13. Bo Zhang & Dylan S. Small, 2020. "A calibrated sensitivity analysis for matched observational studies with application to the effect of second‐hand smoke exposure on blood lead levels in children," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1285-1305, November.
    14. Charlotte Filt Slothuus & Dietrich Schmidt-Vogt & Ole Mertz, 2020. "Navigating between Tea and Rubber in Xishuangbanna, China: When New Crops Fail and Old Ones Work," Land, MDPI, vol. 9(1), pages 1-15, January.
    15. Meimei Wang & Yongchun Yang & Tao Guo, 2021. "Measurement of Urban–Rural Integration Level in Suburbs and Exurbs of Big Cities Based on Land-Use Change in Inland China: Chengdu," Land, MDPI, vol. 10(5), pages 1-17, May.
    16. Bo Zhang & Eric J. Tchetgen Tchetgen, 2022. "A semi‐parametric approach to model‐based sensitivity analysis in observational studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 668-691, December.
    17. Yan Yan & Hui Liu & Canfei He, 2021. "How Does Urban Sprawl Affect Public Health? Evidence from Panel Survey Data in Urbanizing China," IJERPH, MDPI, vol. 18(19), pages 1-14, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0177552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.