IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0177446.html
   My bibliography  Save this article

A distribution model of functional connectome based on criticality and energy constraints

Author

Listed:
  • Kosuke Takagi

Abstract

The analysis of the network structure of the functional connectivity data constructed from fMRI images provides basic information about functions and features of the brain activity. We focus on the two features which are considered as relevant to the brain activity, the criticality and the constraint regarding energy consumptions. Within a wide variety of complex systems, the critical state occurs associated with a phase transition between distinct phases, random one and order one. Although the hypothesis that human brain activity is also in a state of criticality is supported by some experimental results, it still remains controversial. One issue is that experimental distributions exhibit deviations from the power law predicted by the criticality. Based on the assumption that constraints on brain from the biological costs cause these deviations, we derive a distribution model. The evaluation using the information criteria indicates an advantage of this model in fitting to experimental data compared to other representative distribution models, the truncated power law and the power law. Our findings also suggest that the mechanism underlying this model is closely related to the cost effective behavior in human brain with maximizing the network efficiency for the given network cost.

Suggested Citation

  • Kosuke Takagi, 2017. "A distribution model of functional connectome based on criticality and energy constraints," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-19, May.
  • Handle: RePEc:plo:pone00:0177446
    DOI: 10.1371/journal.pone.0177446
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177446
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0177446&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0177446?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Takagi, Kosuke, 2010. "Scale free distribution in an analytical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2143-2146.
    2. Manfred G Kitzbichler & Marie L Smith & Søren R Christensen & Ed Bullmore, 2009. "Broadband Criticality of Human Brain Network Synchronization," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zueva Marina V, 2018. "A New Look at Stimulation Therapy with Complex-Structured Stimuli in Traumatic Brain Injuries," Global Journal of Addiction & Rehabilitation Medicine, Juniper Publishers Inc., vol. 5(1), pages 12-16, January.
    2. Federico Malizia & Santiago Lamata-Otín & Mattia Frasca & Vito Latora & Jesús Gómez-Gardeñes, 2025. "Hyperedge overlap drives explosive transitions in systems with higher-order interactions," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    3. Werner, Gerhard, 2013. "Consciousness viewed in the framework of brain phase space dynamics, criticality, and the Renormalization Group," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 3-12.
    4. Robert G. Sacco, 2019. "The Predictability of Synchronicity Experience: Results from a Survey of Jungian Analysts," International Journal of Psychological Studies, Canadian Center of Science and Education, vol. 11(3), pages 1-46, September.
    5. Christian Meisel & Alexander Storch & Susanne Hallmeyer-Elgner & Ed Bullmore & Thilo Gross, 2012. "Failure of Adaptive Self-Organized Criticality during Epileptic Seizure Attacks," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-8, January.
    6. Tiago L Ribeiro & Mauro Copelli & Fábio Caixeta & Hindiael Belchior & Dante R Chialvo & Miguel A L Nicolelis & Sidarta Ribeiro, 2010. "Spike Avalanches Exhibit Universal Dynamics across the Sleep-Wake Cycle," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-14, November.
    7. Todd Zorick & Mark A Mandelkern, 2013. "Multifractal Detrended Fluctuation Analysis of Human EEG: Preliminary Investigation and Comparison with the Wavelet Transform Modulus Maxima Technique," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-7, July.
    8. Fingelkurts, Andrew A. & Fingelkurts, Alexander A. & Neves, Carlos F.H., 2013. "Consciousness as a phenomenon in the operational architectonics of brain organization: Criticality and self-organization considerations," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 13-31.
    9. Martinez-Saito, Mario, 2022. "Discrete scaling and criticality in a chain of adaptive excitable integrators," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    10. Woo, Junhyuk & Kim, Soon Ho & Kim, Hyeongmo & Han, Kyungreem, 2024. "Characterization of the neuronal and network dynamics of liquid state machines," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    11. Wei, Jinling & Zhou, Haiyan & Meng, Jun & Zhang, Fan & Chen, Yunmo & Zhou, Su, 2016. "The SOC in cells’ living expectations of Conway’s Game of Life and its extended version," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 348-352.
    12. Mikail Rubinov & Olaf Sporns & Jean-Philippe Thivierge & Michael Breakspear, 2011. "Neurobiologically Realistic Determinants of Self-Organized Criticality in Networks of Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-14, June.
    13. Segun Goh & Keumsook Lee & MooYoung Choi & Jean-Yves Fortin, 2014. "Emergence of Criticality in the Transportation Passenger Flow: Scaling and Renormalization in the Seoul Bus System," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-10, March.
    14. Marcelo G Mattar & Michael W Cole & Sharon L Thompson-Schill & Danielle S Bassett, 2015. "A Functional Cartography of Cognitive Systems," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-26, December.
    15. Erkan, Erdem & Erkan, Yasemin, 2024. "Effect of autaptic synapse on signal transmission performance of dressed Hodgkin–Huxley neuron," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    16. Aguilar-Velázquez, D. & Guzmán-Vargas, L., 2017. "Synchronization and 1/f signals in interacting small-world networks," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 418-425.
    17. Allegrini, Paolo & Paradisi, Paolo & Menicucci, Danilo & Laurino, Marco & Bedini, Remo & Piarulli, Andrea & Gemignani, Angelo, 2013. "Sleep unconsciousness and breakdown of serial critical intermittency: New vistas on the global workspace," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 32-43.
    18. Laura E. Suárez & Agoston Mihalik & Filip Milisav & Kenji Marshall & Mingze Li & Petra E. Vértes & Guillaume Lajoie & Bratislav Misic, 2024. "Connectome-based reservoir computing with the conn2res toolbox," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Adrián Ponce-Alvarez & Gustavo Deco & Patric Hagmann & Gian Luca Romani & Dante Mantini & Maurizio Corbetta, 2015. "Resting-State Temporal Synchronization Networks Emerge from Connectivity Topology and Heterogeneity," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-23, February.
    20. Stoop, Ruedi & Kanders, Karlis & Lorimer, Tom & Held, Jenny & Albert, Carlo, 2016. "Big data naturally rescaled," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 81-90.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0177446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.