IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0177029.html
   My bibliography  Save this article

A new two-stage method for revealing missing parts of edges in protein-protein interaction networks

Author

Listed:
  • Wei Zhang
  • Jia Xu
  • Yuanyuan Li
  • Xiufen Zou

Abstract

With the increasing availability of high-throughput data, various computational methods have recently been developed for understanding the cell through protein-protein interaction (PPI) networks at a systems level. However, due to the incompleteness of the original PPI networks those efforts have been significantly hindered. In this paper, we propose a two stage method to predict underlying links between two originally unlinked protein pairs. First, we measure gene expression and gene functional similarly between unlinked protein pairs on Saccharomyces cerevisiae benchmark network and obtain new constructed networks. Then, we select the significant part of the new predicted links by analyzing the difference between essential proteins that have been identified based on the new constructed networks and the original network. Furthermore, we validate the performance of the new method by using the reliable and comprehensive PPI dataset obtained from the STRING database and compare the new proposed method with four other random walk-based methods. Comparing the results indicates that the new proposed strategy performs well in predicting underlying links. This study provides a general paradigm for predicting new interactions between protein pairs and offers new insights into identifying essential proteins.

Suggested Citation

  • Wei Zhang & Jia Xu & Yuanyuan Li & Xiufen Zou, 2017. "A new two-stage method for revealing missing parts of edges in protein-protein interaction networks," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-22, May.
  • Handle: RePEc:plo:pone00:0177029
    DOI: 10.1371/journal.pone.0177029
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177029
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0177029&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0177029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin A Shoemaker & Anna R Panchenko, 2007. "Deciphering Protein–Protein Interactions. Part II. Computational Methods to Predict Protein and Domain Interaction Partners," PLOS Computational Biology, Public Library of Science, vol. 3(4), pages 1-7, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyi Liu & Bin Liu & Zhimin Huang & Ting Shi & Yingyi Chen & Jian Zhang, 2012. "SPPS: A Sequence-Based Method for Predicting Probability of Protein-Protein Interaction Partners," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-6, January.
    2. Chuanhua Xing & David B Dunson, 2011. "Bayesian Inference for Genomic Data Integration Reduces Misclassification Rate in Predicting Protein-Protein Interactions," PLOS Computational Biology, Public Library of Science, vol. 7(7), pages 1-10, July.
    3. Saket Navlakha & Anthony Gitter & Ziv Bar-Joseph, 2012. "A Network-based Approach for Predicting Missing Pathway Interactions," PLOS Computational Biology, Public Library of Science, vol. 8(8), pages 1-13, August.
    4. Saeid Rasti & Chrysafis Vogiatzis, 2019. "A survey of computational methods in protein–protein interaction networks," Annals of Operations Research, Springer, vol. 276(1), pages 35-87, May.
    5. Guilherme T Valente & Marcio L Acencio & Cesar Martins & Ney Lemke, 2013. "The Development of a Universal In Silico Predictor of Protein-Protein Interactions," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-11, May.
    6. Jana Kludas & Mikko Arvas & Sandra Castillo & Tiina Pakula & Merja Oja & Céline Brouard & Jussi Jäntti & Merja Penttilä & Juho Rousu, 2016. "Machine Learning of Protein Interactions in Fungal Secretory Pathways," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-20, July.
    7. Hai-Bo Zhang & Xiao-Bao Ding & Jie Jin & Wen-Ping Guo & Qiao-Lei Yang & Peng-Cheng Chen & Heng Yao & Li Ruan & Yu-Tian Tao & Xin Chen, 2022. "Predicted mouse interactome and network-based interpretation of differentially expressed genes," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-16, April.
    8. Zhu-Hong You & Keith C C Chan & Pengwei Hu, 2015. "Predicting Protein-Protein Interactions from Primary Protein Sequences Using a Novel Multi-Scale Local Feature Representation Scheme and the Random Forest," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-19, May.
    9. Vijaykumar Yogesh Muley & Akash Ranjan, 2012. "Effect of Reference Genome Selection on the Performance of Computational Methods for Genome-Wide Protein-Protein Interaction Prediction," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-13, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0177029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.