Machine Learning of Protein Interactions in Fungal Secretory Pathways
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0159302
Download full text from publisher
References listed on IDEAS
- Benjamin A Shoemaker & Anna R Panchenko, 2007. "Deciphering Protein–Protein Interactions. Part II. Computational Methods to Predict Protein and Domain Interaction Partners," PLOS Computational Biology, Public Library of Science, vol. 3(4), pages 1-7, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xinyi Liu & Bin Liu & Zhimin Huang & Ting Shi & Yingyi Chen & Jian Zhang, 2012. "SPPS: A Sequence-Based Method for Predicting Probability of Protein-Protein Interaction Partners," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-6, January.
- Chuanhua Xing & David B Dunson, 2011. "Bayesian Inference for Genomic Data Integration Reduces Misclassification Rate in Predicting Protein-Protein Interactions," PLOS Computational Biology, Public Library of Science, vol. 7(7), pages 1-10, July.
- Saket Navlakha & Anthony Gitter & Ziv Bar-Joseph, 2012. "A Network-based Approach for Predicting Missing Pathway Interactions," PLOS Computational Biology, Public Library of Science, vol. 8(8), pages 1-13, August.
- Saeid Rasti & Chrysafis Vogiatzis, 2019. "A survey of computational methods in protein–protein interaction networks," Annals of Operations Research, Springer, vol. 276(1), pages 35-87, May.
- Guilherme T Valente & Marcio L Acencio & Cesar Martins & Ney Lemke, 2013. "The Development of a Universal In Silico Predictor of Protein-Protein Interactions," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-11, May.
- Wei Zhang & Jia Xu & Yuanyuan Li & Xiufen Zou, 2017. "A new two-stage method for revealing missing parts of edges in protein-protein interaction networks," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-22, May.
- Hai-Bo Zhang & Xiao-Bao Ding & Jie Jin & Wen-Ping Guo & Qiao-Lei Yang & Peng-Cheng Chen & Heng Yao & Li Ruan & Yu-Tian Tao & Xin Chen, 2022. "Predicted mouse interactome and network-based interpretation of differentially expressed genes," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-16, April.
- Zhu-Hong You & Keith C C Chan & Pengwei Hu, 2015. "Predicting Protein-Protein Interactions from Primary Protein Sequences Using a Novel Multi-Scale Local Feature Representation Scheme and the Random Forest," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-19, May.
- Vijaykumar Yogesh Muley & Akash Ranjan, 2012. "Effect of Reference Genome Selection on the Performance of Computational Methods for Genome-Wide Protein-Protein Interaction Prediction," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-13, July.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0159302. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.