IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0176215.html
   My bibliography  Save this article

Research on calibrating rock mechanical parameters with a statistical method

Author

Listed:
  • Zhen Liu
  • Ye Guo
  • Shuheng Du
  • Gengyu Wu
  • Mao Pan

Abstract

Research on the modeling of rock mechanics parameters is of great significance to the exploration of oil and gas. The use of logging data with the Kriging interpolation to study rock mechanics parameters has been proven to be effective in reservoir prediction and other oilfield applications and can provide additional data. However, there will sometimes be a great deviation due to the limited samples and the strong heterogeneity of a layer. To solve this problem, a new approach was proposed to calibrate rock mechanical models through the statistical analysis of logging data. A module was developed to calibrate rock mechanics parameters automatically, which was then applied to the Wangyao area of the Ansai oilfield. This method significantly improved the accuracy of rock mechanics modeling.

Suggested Citation

  • Zhen Liu & Ye Guo & Shuheng Du & Gengyu Wu & Mao Pan, 2017. "Research on calibrating rock mechanical parameters with a statistical method," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-16, May.
  • Handle: RePEc:plo:pone00:0176215
    DOI: 10.1371/journal.pone.0176215
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0176215
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0176215&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0176215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roustant, Olivier & Ginsbourger, David & Deville, Yves, 2012. "DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i01).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biewen, Martin & Kugler, Philipp, 2021. "Two-stage least squares random forests with an application to Angrist and Evans (1998)," Economics Letters, Elsevier, vol. 204(C).
    2. Mehdad, E. & Kleijnen, Jack P.C., 2014. "Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging," Other publications TiSEM 8fa8d96f-a086-4c4b-88ab-9, Tilburg University, School of Economics and Management.
    3. Victor Picheny & Mickael Binois & Abderrahmane Habbal, 2019. "A Bayesian optimization approach to find Nash equilibria," Journal of Global Optimization, Springer, vol. 73(1), pages 171-192, January.
    4. Torossian, Léonard & Picheny, Victor & Faivre, Robert & Garivier, Aurélien, 2020. "A review on quantile regression for stochastic computer experiments," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    5. Kamiński, Bogumił, 2015. "A method for the updating of stochastic kriging metamodels," European Journal of Operational Research, Elsevier, vol. 247(3), pages 859-866.
    6. Krityakierne, Tipaluck & Baowan, Duangkamon, 2020. "Aggregated GP-based Optimization for Contaminant Source Localization," Operations Research Perspectives, Elsevier, vol. 7(C).
    7. Li, Peiping & Wang, Yu, 2022. "An active learning reliability analysis method using adaptive Bayesian compressive sensing and Monte Carlo simulation (ABCS-MCS)," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    8. Wu, Xu & Kozlowski, Tomasz & Meidani, Hadi, 2018. "Kriging-based inverse uncertainty quantification of nuclear fuel performance code BISON fission gas release model using time series measurement data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 422-436.
    9. C Rohrbeck & D A Costain & A Frigessi, 2018. "Bayesian spatial monotonic multiple regression," Biometrika, Biometrika Trust, vol. 105(3), pages 691-707.
    10. Teixeira, Rui & Nogal, Maria & O’Connor, Alan & Martinez-Pastor, Beatriz, 2020. "Reliability assessment with density scanned adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    11. James Risk & Michael Ludkovski, 2015. "Statistical Emulators for Pricing and Hedging Longevity Risk Products," Papers 1508.00310, arXiv.org, revised Sep 2015.
    12. Balata, Alessandro & Ludkovski, Michael & Maheshwari, Aditya & Palczewski, Jan, 2021. "Statistical learning for probability-constrained stochastic optimal control," European Journal of Operational Research, Elsevier, vol. 290(2), pages 640-656.
    13. G. Dosi & M. C. Pereira & M. E. Virgillito, 2018. "On the robustness of the fat-tailed distribution of firm growth rates: a global sensitivity analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 173-193, April.
    14. Kleijnen, J.P.C. & Mehdad, Ehsan, 2015. "Estimating the Variance of the Predictor in Stochastic Kriging," Other publications TiSEM dbbd2fa2-eccf-4f71-be9b-c, Tilburg University, School of Economics and Management.
    15. Mickaël Binois & David Ginsbourger & Olivier Roustant, 2020. "On the choice of the low-dimensional domain for global optimization via random embeddings," Journal of Global Optimization, Springer, vol. 76(1), pages 69-90, January.
    16. Betancourt, José & Bachoc, François & Klein, Thierry & Idier, Déborah & Pedreros, Rodrigo & Rohmer, Jérémy, 2020. "Gaussian process metamodeling of functional-input code for coastal flood hazard assessment," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    17. Jack P. C. Kleijnen & Wim C. M. van Beers, 2022. "Statistical Tests for Cross-Validation of Kriging Models," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 607-621, January.
    18. Mohammadi, Hossein & Challenor, Peter & Goodfellow, Marc, 2019. "Emulating dynamic non-linear simulators using Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 178-196.
    19. Mike Ludkovski, 2020. "mlOSP: Towards a Unified Implementation of Regression Monte Carlo Algorithms," Papers 2012.00729, arXiv.org, revised Oct 2022.
    20. Youssef Diouane & Victor Picheny & Rodolophe Le Riche & Alexandre Scotto Di Perrotolo, 2023. "TREGO: a trust-region framework for efficient global optimization," Journal of Global Optimization, Springer, vol. 86(1), pages 1-23, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0176215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.