IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0173620.html
   My bibliography  Save this article

Assessment of the genomic prediction accuracy for feed efficiency traits in meat-type chickens

Author

Listed:
  • Tianfei Liu
  • Chenglong Luo
  • Jie Wang
  • Jie Ma
  • Dingming Shu
  • Mogens Sandø Lund
  • Guosheng Su
  • Hao Qu

Abstract

Feed represents the major cost of chicken production. Selection for improving feed utilization is a feasible way to reduce feed cost and greenhouse gas emissions. The objectives of this study were to investigate the efficiency of genomic prediction for feed conversion ratio (FCR), residual feed intake (RFI), average daily gain (ADG) and average daily feed intake (ADFI) and to assess the impact of selection for feed efficiency traits FCR and RFI on eviscerating percentage (EP), breast muscle percentage (BMP) and leg muscle percentage (LMP) in meat-type chickens. Genomic prediction was assessed using a 4-fold cross-validation for two validation scenarios. The first scenario was a random family sampling validation (CVF), and the second scenario was a random individual sampling validation (CVR). Variance components were estimated based on the genomic relationship built with single nucleotide polymorphism markers. Genomic estimated breeding values (GEBV) were predicted using a genomic best linear unbiased prediction model. The accuracies of GEBV were evaluated in two ways: the correlation between GEBV and corrected phenotypic value divided by the square root of heritability, i.e., the correlation-based accuracy, and model-based theoretical accuracy. Breeding values were also predicted using a conventional pedigree-based best linear unbiased prediction model in order to compare accuracies of genomic and conventional predictions. The heritability estimates of FCR and RFI were 0.29 and 0.50, respectively. The heritability estimates of ADG, ADFI, EP, BMP and LMP ranged from 0.34 to 0.53. In the CVF scenario, the correlation-based accuracy and the theoretical accuracy of genomic prediction for FCR were slightly higher than those for RFI. The correlation-based accuracies for FCR, RFI, ADG and ADFI were 0.360, 0.284, 0.574 and 0.520, respectively, and the model-based theoretical accuracies were 0.420, 0.414, 0.401 and 0.382, respectively. In the CVR scenario, the correlation-based accuracy and the theoretical accuracy of genomic prediction for FCR was lower than RFI, which was different from the CVF scenario. The correlation-based accuracies for FCR, RFI, ADG and ADFI were 0.449, 0.593, 0.581 and 0.627, respectively, and the model-based theoretical accuracies were 0.577, 0.629, 0.631 and 0.638, respectively. The accuracies of genomic predictions were 0.371 and 0.322 higher than the conventional pedigree-based predictions for the CVF and CVR scenarios, respectively. The genetic correlations of FCR with EP, BMP and LMP were -0.427, -0.156 and -0.338, respectively. The correlations between RFI and the three carcass traits were -0.320, -0.404 and -0.353, respectively. These results indicate that RFI and FCR have a moderate accuracy of genomic prediction. Improving RFI and FCR could be favourable for EP, BMP and LMP. Compared with FCR, which can be improved by selection for ADG in typical meat-type chicken breeding programs, selection for RFI could lead to extra improvement in feed efficiency.

Suggested Citation

  • Tianfei Liu & Chenglong Luo & Jie Wang & Jie Ma & Dingming Shu & Mogens Sandø Lund & Guosheng Su & Hao Qu, 2017. "Assessment of the genomic prediction accuracy for feed efficiency traits in meat-type chickens," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-11, March.
  • Handle: RePEc:plo:pone00:0173620
    DOI: 10.1371/journal.pone.0173620
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0173620
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0173620&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0173620?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jinliang, 2016. "Pedigrees or markers: Which are better in estimating relatedness and inbreeding coefficient?," Theoretical Population Biology, Elsevier, vol. 107(C), pages 4-13.
    2. Guosheng Su & Ole F Christensen & Tage Ostersen & Mark Henryon & Mogens S Lund, 2012. "Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-7, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Starr, Alexandra & Riemann, Rainer, 2022. "Common genetic and environmental effects on cognitive ability, conscientiousness, self-perceived abilities, and school performance," Intelligence, Elsevier, vol. 93(C).
    2. Chung-Feng Kao & Jia-Rou Liu & Hung Hung & Po-Hsiu Kuo, 2015. "A Robust GWSS Method to Simultaneously Detect Rare and Common Variants for Complex Disease," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-14, April.
    3. Morteza Mahdavi & Gholam Reza Dashab & Mehdi Vafaye Valleh & Mohammad Rokouei & Mehdi Sargolzaei, 2018. "Genomic evaluation and variance component estimation of additive and dominance effects using single nucleotide polymorphism markers in heterogeneous stock mice," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 63(12), pages 492-506.
    4. Michaela Černá & Michal Milerski & Michala Mušková, 2021. "The effect of inbreeding on the growth ability of meat sheep breeds in the Czech Republic," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 66(4), pages 122-128.
    5. Bryan Irvine Lopez & Vanessa Viterbo & Choul Won Song & Kang Seok Seo, 2019. "Estimation of genetic parameters and accuracy of genomic prediction for production traits in Duroc pigs," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 64(4), pages 160-165.
    6. Martini, Johannes W.R. & Toledo, Fernando H. & Crossa, José, 2020. "On the approximation of interaction effect models by Hadamard powers of the additive genomic relationship," Theoretical Population Biology, Elsevier, vol. 132(C), pages 16-23.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0173620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.