IDEAS home Printed from https://ideas.repec.org/a/caa/jnlcjs/v64y2019i4id150-2018-cjas.html
   My bibliography  Save this article

Estimation of genetic parameters and accuracy of genomic prediction for production traits in Duroc pigs

Author

Listed:
  • Bryan Irvine Lopez

    (Department of Animal Science and Technology, Sunchon National University, Suncheon, Republic of Korea)

  • Vanessa Viterbo

    (Department of Animal Science and Technology, Sunchon National University, Suncheon, Republic of Korea
    Department of Animal Science, College of Agriculture, Central Luzon State University, Science City of Muńoz, Republic of the Philippines)

  • Choul Won Song

    (Department of Animal Science and Technology, Sunchon National University, Suncheon, Republic of Korea)

  • Kang Seok Seo

    (Department of Animal Science and Technology, Sunchon National University, Suncheon, Republic of Korea)

Abstract

Genetic parameters and accuracy of genomic prediction for production traits in a Duroc population were estimated. Data were on 24 828 purebred Duroc pigs born in 2000-2016. After quality control procedures, 30 263 single nucleotide polymorphism markers and 560 animals remained that were used to predict the genomic breeding values of individuals. Accuracies of predicted breeding values for average daily gain (ADG), backfat thickness (BF), loin muscle area (LMA), lean percentage (LP) and age at 90 kg (D90) between pedigree-based and single-step methods were compared. Analyses were carried out with a multivariate animal model to estimate genetic parameters for production traits while univariate analyses were performed to predict the genomic breeding values of individuals. Heritability estimates from pedigree analysis were moderate to high. Heritability estimates and standard error for ADG, BF, LMA, LP and D90 were 0.35 ± 0.01, 0.35 ± 0.11, 0.24 ± 0.04, 0.42 ± 0.11 and 0.37 ± 0.03, respectively. Genetic correlations of ADG with BF and LP were low and negative. Genetic correlations of LMA with ADG, BF, LP and D90 were -0.37, -0.27, 0.48 and 0.31, respectively. High correlations were observed between ADG and D90 (-0.98), and also between BF and LP (-0.93). Accuracies of genomic breeding values for ADG, BF, LMA, LP and D90 were 0.30, 0.33, 0.38, 0.40 and 0.28, respectively. Corresponding accuracies using pedigree-based method were 0.29, 0.32, 0.38, 0.39 and 0.27, respectively. The results showed that the single-step method did not show significant advantage compared to the pedigree-based method.

Suggested Citation

  • Bryan Irvine Lopez & Vanessa Viterbo & Choul Won Song & Kang Seok Seo, 2019. "Estimation of genetic parameters and accuracy of genomic prediction for production traits in Duroc pigs," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 64(4), pages 160-165.
  • Handle: RePEc:caa:jnlcjs:v:64:y:2019:i:4:id:150-2018-cjas
    DOI: 10.17221/150/2018-CJAS
    as

    Download full text from publisher

    File URL: http://cjas.agriculturejournals.cz/doi/10.17221/150/2018-CJAS.html
    Download Restriction: free of charge

    File URL: http://cjas.agriculturejournals.cz/doi/10.17221/150/2018-CJAS.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/150/2018-CJAS?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guosheng Su & Ole F Christensen & Tage Ostersen & Mark Henryon & Mogens S Lund, 2012. "Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-7, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Starr, Alexandra & Riemann, Rainer, 2022. "Common genetic and environmental effects on cognitive ability, conscientiousness, self-perceived abilities, and school performance," Intelligence, Elsevier, vol. 93(C).
    2. Chung-Feng Kao & Jia-Rou Liu & Hung Hung & Po-Hsiu Kuo, 2015. "A Robust GWSS Method to Simultaneously Detect Rare and Common Variants for Complex Disease," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-14, April.
    3. Tianfei Liu & Chenglong Luo & Jie Wang & Jie Ma & Dingming Shu & Mogens Sandø Lund & Guosheng Su & Hao Qu, 2017. "Assessment of the genomic prediction accuracy for feed efficiency traits in meat-type chickens," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-11, March.
    4. Morteza Mahdavi & Gholam Reza Dashab & Mehdi Vafaye Valleh & Mohammad Rokouei & Mehdi Sargolzaei, 2018. "Genomic evaluation and variance component estimation of additive and dominance effects using single nucleotide polymorphism markers in heterogeneous stock mice," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 63(12), pages 492-506.
    5. Martini, Johannes W.R. & Toledo, Fernando H. & Crossa, José, 2020. "On the approximation of interaction effect models by Hadamard powers of the additive genomic relationship," Theoretical Population Biology, Elsevier, vol. 132(C), pages 16-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlcjs:v:64:y:2019:i:4:id:150-2018-cjas. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.