IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0171680.html
   My bibliography  Save this article

Win-stay-lose-learn promotes cooperation in the prisoner’s dilemma game with voluntary participation

Author

Listed:
  • Chen Chu
  • Jinzhuo Liu
  • Chen Shen
  • Jiahua Jin
  • Lei Shi

Abstract

Voluntary participation, demonstrated to be a simple yet effective mechanism to promote persistent cooperative behavior, has been extensively studied. It has also been verified that the aspiration-based win-stay-lose-learn strategy updating rule promotes the evolution of cooperation. Inspired by this well-known fact, we combine the Win-Stay-Lose-Learn updating rule with voluntary participation: Players maintain their strategies when they are satisfied, or players attempt to imitate the strategy of one randomly chosen neighbor. We find that this mechanism maintains persistent cooperative behavior, even further promotes the evolution of cooperation under certain conditions.

Suggested Citation

  • Chen Chu & Jinzhuo Liu & Chen Shen & Jiahua Jin & Lei Shi, 2017. "Win-stay-lose-learn promotes cooperation in the prisoner’s dilemma game with voluntary participation," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-8, February.
  • Handle: RePEc:plo:pone00:0171680
    DOI: 10.1371/journal.pone.0171680
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0171680
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0171680&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0171680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Du, Wen-Bo & Cao, Xian-Bin & Zhao, Lin & Hu, Mao-Bin, 2009. "Evolutionary games on scale-free networks with a preferential selection mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(20), pages 4509-4514.
    2. Zhang, Gui-Qing & Sun, Qi-Bo & Wang, Lin, 2013. "Noise-induced enhancement of network reciprocity in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 51(C), pages 31-35.
    3. Yongkui Liu & Xiaojie Chen & Lin Zhang & Long Wang & Matjaž Perc, 2012. "Win-Stay-Lose-Learn Promotes Cooperation in the Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    4. Cho, In-Koo & Matsui, Akihiko, 2005. "Learning aspiration in repeated games," Journal of Economic Theory, Elsevier, vol. 124(2), pages 171-201, October.
    5. Du, Wen-Bo & Cao, Xian-Bin & Hu, Mao-Bin, 2009. "The effect of asymmetric payoff mechanism on evolutionary networked prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(24), pages 5005-5012.
    6. Zhi-Qin Ma & Cheng-Yi Xia & Shi-Wen Sun & Li Wang & Huai-Bin Wang & Juan Wang, 2011. "Heterogeneous Link Weight Promotes The Cooperation In Spatial Prisoner'S Dilemma," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 22(11), pages 1257-1268.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Zhenghong & Wang, Shengnan & Gu, Zhiyang & Xu, Juwei & Song, Qun, 2017. "Heterogeneous preference selection promotes cooperation in spatial prisoners’ dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 20-23.
    2. Chu, Chen & Cui, Simin & Yuan, Zheng & Yu, Chunbin, 2022. "A win-stay-lose-learn mechanism based on aspiration can promote cooperation in a multigame," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    3. Han, Zhen & Zhu, Peican & Shi, Juan, 2023. "Novel payoff calculation resolves social dilemmas in networks," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    4. Hu, Qi & Jin, Tao & Jiang, Yulian & Liu, Xingwen, 2024. "Reputation incentives with public supervision promote cooperation in evolutionary games," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    5. Song, Qun & Cao, Zhaoheng & Tao, Rui & Jiang, Wei & Liu, Chen & Liu, Jinzhuo, 2020. "Conditional neutral punishment promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    6. Jia, Danyang & Shen, Chen & Guo, Hao & Chu, Chen & Lu, Jun & Shi, Lei, 2018. "The impact of loners’ participation willingness on cooperation in voluntary prisoner's dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 218-223.
    7. Shu, Feng, 2020. "A win-switch-lose-stay strategy promotes cooperation in the evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    8. Wang, Lu & Ye, Shun-Qiang & Cheong, Kang Hao & Bao, Wei & Xie, Neng-gang, 2018. "The role of emotions in spatial prisoner’s dilemma game with voluntary participation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1396-1407.
    9. Shi, Zhenyu & Wei, Wei & Feng, Xiangnan & Zhang, Ruizhi & Zheng, Zhiming, 2021. "Effects of dynamic-Win-Stay-Lose-Learn model with voluntary participation in social dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    10. Zhang, Shuhua & Zhang, Zhipeng & Wu, Yu’e & Yan, Ming & Li, Yu, 2019. "Strategy preference promotes cooperation in spatial evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 181-188.
    11. Geng, Yini & Shen, Chen & Guo, Hao & Chu, Chen & Yu, Dalei & Shi, Lei, 2017. "Historical payoff promotes cooperation in voluntary prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 145-149.
    12. Xie, Yunya & Bai, Yu & Zhang, Yankun & Peng, Zhengyin, 2024. "Trust-induced cooperation under the complex interaction of networks and emotions," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Guang-Hai & Li, Ming-Chu & Fan, Xin-Xin & Deonauth, Nakema & Wang, Zhen, 2014. "Optimism when winning and cautiousness when losing promote cooperation in the spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 181-189.
    2. Ping Zhu & Guiyi Wei, 2014. "Stochastic Heterogeneous Interaction Promotes Cooperation in Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    3. Tao Wang & Keke Huang & Zhen Wang & Xiaoping Zheng, 2015. "Impact of Small Groups with Heterogeneous Preference on Behavioral Evolution in Population Evacuation," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-13, March.
    4. Chen, Mei-huan & Wang, Li & Wang, Juan & Sun, Shi-wen & Xia, Cheng-yi, 2015. "Impact of individual response strategy on the spatial public goods game within mobile agents," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 192-202.
    5. Cui, Guang-Hai & Wang, Zhen & Yang, Yan-Cun & Tian, Sheng-Wen & Yue, Jun, 2018. "Heterogeneous game resource distributions promote cooperation in spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1191-1200.
    6. Wang, Yi-Ling, 2013. "Asymmetric evaluation of fitness enhances spatial reciprocity in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 76-81.
    7. Wang, Yi-Ling, 2013. "Learning ability driven by majority selection enhances spatial reciprocity in prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 96-100.
    8. Xia, Ke, 2021. "Average abundance function of multi-player threshold public goods without initial endowment evolutionary game model under differential aspiration levels and redistribution mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    9. Li, Hong-yang & Xiao, Jian & Li, Yu-meng & Wang, Zhen, 2013. "Effects of neighborhood type and size in spatial public goods game on diluted lattice," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 145-153.
    10. Shi, Zhenyu & Wei, Wei & Feng, Xiangnan & Zhang, Ruizhi & Zheng, Zhiming, 2021. "Effects of dynamic-Win-Stay-Lose-Learn model with voluntary participation in social dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    11. Juan Wang & Wenwen Lu & Lina Liu & Li Li & Chengyi Xia, 2016. "Utility Evaluation Based on One-To-N Mapping in the Prisoner’s Dilemma Game for Interdependent Networks," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-14, December.
    12. Liu, Jinzhuo & Li, Tong & Wang, Wei & Zhao, Na & Hang, Feilu, 2018. "Impact of strategy-neutral rewarding on the evolution of cooperative behavior," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 76-79.
    13. Lu, Kun & Wu, Bin & Li, Ming-chu & Wang, Zhen, 2014. "Other-regarding preference causing ping-pong effect in self-questioning game," Chaos, Solitons & Fractals, Elsevier, vol. 59(C), pages 51-58.
    14. Fengjie Xie & Jing Shi & Jun Lin, 2017. "Impact of interaction style and degree on the evolution of cooperation on Barabási–Albert scale-free network," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-15, August.
    15. Shi, Zhenyu & Wei, Wei & Perc, Matjaž & Li, Baifeng & Zheng, Zhiming, 2022. "Coupling group selection and network reciprocity in social dilemmas through multilayer networks," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    16. Xia, Chengyi & Miao, Qin & Zhang, Juanjuan, 2013. "Impact of neighborhood separation on the spatial reciprocity in the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 51(C), pages 22-30.
    17. Wu-Jie Yuan & Cheng-Yi Xia, 2014. "Role of Investment Heterogeneity in the Cooperation on Spatial Public Goods Game," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-6, March.
    18. Inkoo Cho & Noah Williams, 2024. "Collusive Outcomes Without Collusion," Papers 2403.07177, arXiv.org.
    19. Li, Yumeng & Zhang, Jun & Perc, Matjaž, 2018. "Effects of compassion on the evolution of cooperation in spatial social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 437-443.
    20. Wu, Yu’e & Zhang, Zhipeng & Yang, Guoli & Liu, Haixin & Zhang, Qingfeng, 2022. "Evolution of cooperation driven by diversity on a double-layer square lattice," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0171680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.