IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0121949.html
   My bibliography  Save this article

Impact of Small Groups with Heterogeneous Preference on Behavioral Evolution in Population Evacuation

Author

Listed:
  • Tao Wang
  • Keke Huang
  • Zhen Wang
  • Xiaoping Zheng

Abstract

Up to now, there have been a great number of mechanisms to explain the individual behavior and population traits, which seem of particular significance in evolutionary biology and social behavior analysis. Among them, small groups and heterogeneity are two useful frameworks to the above issue. However, vast majority of existing works separately consider both scenarios, which is inconsistent with realistic cases in our life. Here we propose the evolutionary games of heterogeneous small groups (namely, different small groups possess different preferences to dilemma) to study the collective behavior in population evacuation. Importantly, players usually face completely different dilemmas inside and outside the small groups. By means of numerous computation simulations, it is unveiled that the ratio of players in one certain small group directly decides the final behavior of the whole population. Moreover, it can also be concluded that heterogeneous degree of preference for different small groups plays a key role in the behavior traits of the system, which may validate some realistic social observations. The proposed framework is thus universally applicable and may shed new light into the solution of social dilemmas.

Suggested Citation

  • Tao Wang & Keke Huang & Zhen Wang & Xiaoping Zheng, 2015. "Impact of Small Groups with Heterogeneous Preference on Behavioral Evolution in Population Evacuation," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-13, March.
  • Handle: RePEc:plo:pone00:0121949
    DOI: 10.1371/journal.pone.0121949
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121949
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0121949&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0121949?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas Chadefaux & Dirk Helbing, 2010. "How Wealth Accumulation Can Promote Cooperation," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-7, October.
    2. Dirk Helbing & Wenjian Yu, 2008. "Migration As A Mechanism To Promote Cooperation," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 11(04), pages 641-652.
    3. Xia, Chengyi & Miao, Qin & Zhang, Juanjuan, 2013. "Impact of neighborhood separation on the spatial reciprocity in the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 51(C), pages 22-30.
    4. Jorgen W. Weibull, 1997. "Evolutionary Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262731215, April.
    5. Zhang, Gui-Qing & Sun, Qi-Bo & Wang, Lin, 2013. "Noise-induced enhancement of network reciprocity in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 51(C), pages 31-35.
    6. Matjaž Perc & Zhen Wang, 2010. "Heterogeneous Aspirations Promote Cooperation in the Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-8, December.
    7. Zhi-Qin Ma & Cheng-Yi Xia & Shi-Wen Sun & Li Wang & Huai-Bin Wang & Juan Wang, 2011. "Heterogeneous Link Weight Promotes The Cooperation In Spatial Prisoner'S Dilemma," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 22(11), pages 1257-1268.
    8. Hisashi Ohtsuki & Yoh Iwasa & Martin A. Nowak, 2009. "Indirect reciprocity provides only a narrow margin of efficiency for costly punishment," Nature, Nature, vol. 457(7225), pages 79-82, January.
    9. repec:hhs:iuiwop:487 is not listed on IDEAS
    10. Dirk Helbing & Anders Johansson, 2010. "Cooperation, Norms, and Revolutions: A Unified Game-Theoretical Approach," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-15, October.
    11. Wu-Jie Yuan & Cheng-Yi Xia, 2014. "Role of Investment Heterogeneity in the Cooperation on Spatial Public Goods Game," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-6, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Fengyuan & Wang, Jianwei & He, Jialu, 2022. "Inequal dependence on members stabilizes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    2. Burkov, Andriy & Chaib-draa, Brahim, 2015. "Computing equilibria in discounted dynamic games," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 863-884.
    3. Zhang, Shuhua & Zhang, Zhipeng & Wu, Yu’e & Yan, Ming & Li, Yu, 2019. "Strategy preference promotes cooperation in spatial evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 181-188.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Mei-huan & Wang, Li & Wang, Juan & Sun, Shi-wen & Xia, Cheng-yi, 2015. "Impact of individual response strategy on the spatial public goods game within mobile agents," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 192-202.
    2. Wang, Yi-Ling, 2013. "Asymmetric evaluation of fitness enhances spatial reciprocity in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 76-81.
    3. Wang, Yi-Ling, 2013. "Learning ability driven by majority selection enhances spatial reciprocity in prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 96-100.
    4. Li, Hong-yang & Xiao, Jian & Li, Yu-meng & Wang, Zhen, 2013. "Effects of neighborhood type and size in spatial public goods game on diluted lattice," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 145-153.
    5. Wu-Jie Yuan & Cheng-Yi Xia, 2014. "Role of Investment Heterogeneity in the Cooperation on Spatial Public Goods Game," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-6, March.
    6. Te Wu & Feng Fu & Long Wang, 2011. "Moving Away from Nasty Encounters Enhances Cooperation in Ecological Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-7, November.
    7. Wu, Yu’e & Zhang, Zhipeng & Yang, Guoli & Liu, Haixin & Zhang, Qingfeng, 2022. "Evolution of cooperation driven by diversity on a double-layer square lattice," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    8. Wang, Lei & Wang, Juan & Guo, Baohong & Ding, Shuai & Li, Yukun & Xia, Chengyi, 2014. "Effects of benefit-inspired network coevolution on spatial reciprocity in the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 66(C), pages 9-16.
    9. Hu, Menglong & Wang, Juan & Kong, Lingcong & An, Kang & Bi, Tao & Guo, Baohong & Dong, Enzeng, 2015. "Incorporating the information from direct and indirect neighbors into fitness evaluation enhances the cooperation in the social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 47-52.
    10. Markus Brede, 2013. "Short Versus Long Term Benefits and the Evolution of Cooperation in the Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    11. Genki Ichinose & Masaya Saito & Shinsuke Suzuki, 2013. "Collective Chasing Behavior between Cooperators and Defectors in the Spatial Prisoner’s Dilemma," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-10, July.
    12. Chen, Wei & Wang, Jianwei & Yu, Fengyuan & He, Jialu & Xu, Wenshu & Dai, Wenhui, 2024. "Successful initial positioning of non-cooperative individuals in cooperative populations effectively hinders cooperation prosperity," Applied Mathematics and Computation, Elsevier, vol. 462(C).
    13. Yang, Luhe & Zhang, Lianzhong & Yang, Duoxing, 2022. "Asymmetric micro-dynamics in spatial anonymous public goods game," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    14. Huang, Keke & Zheng, Xiaoping & Yang, Yeqing & Wang, Tao, 2015. "Behavioral evolution in evacuation crowd based on heterogeneous rationality of small groups," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 501-506.
    15. Zhang, Chunyan & Zhang, Jianlei & Xie, Guangming, 2014. "Evolution of cooperation among game players with non-uniform migration scopes," Chaos, Solitons & Fractals, Elsevier, vol. 59(C), pages 103-111.
    16. Zhou, Tianwei & Ding, Shuai & Fan, Wenjuan & Wang, Hao, 2016. "An improved public goods game model with reputation effect on the spatial lattices," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 130-135.
    17. Zhu, Wenqiang & Pan, Qiuhui & Song, Sha & He, Mingfeng, 2023. "Effects of exposure-based reward and punishment on the evolution of cooperation in prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    18. Hu, Xiang & Liu, Xingwen & Zhou, Xiaobing, 2022. "A proportional-neighborhood-diversity evolution in snowdrift game on square lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    19. Tian, Lin-Lin & Li, Ming-Chu & Wang, Zhen, 2016. "Cooperation enhanced by indirect reciprocity in spatial prisoner’s dilemma games for social P2P systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1252-1260.
    20. Cui, Guang-Hai & Wang, Zhen & Yang, Yan-Cun & Tian, Sheng-Wen & Yue, Jun, 2018. "Heterogeneous game resource distributions promote cooperation in spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1191-1200.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0121949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.