IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/1000513.html
   My bibliography  Save this article

Emergence of Noise-Induced Oscillations in the Central Circadian Pacemaker

Author

Listed:
  • Caroline H Ko
  • Yujiro R Yamada
  • David K Welsh
  • Ethan D Buhr
  • Andrew C Liu
  • Eric E Zhang
  • Martin R Ralph
  • Steve A Kay
  • Daniel B Forger
  • Joseph S Takahashi

Abstract

Computational modeling and experimentation explain how intercellular coupling and intracellular noise can generate oscillations in a mammalian neuronal network even in the absence of cell-autonomous oscillators.Bmal1 is an essential transcriptional activator within the mammalian circadian clock. We report here that the suprachiasmatic nucleus (SCN) of Bmal1-null mutant mice, unexpectedly, generates stochastic oscillations with periods that overlap the circadian range. Dissociated SCN neurons expressed fluctuating levels of PER2 detected by bioluminescence imaging but could not generate circadian oscillations intrinsically. Inhibition of intercellular communication or cyclic-AMP signaling in SCN slices, which provide a positive feed-forward signal to drive the intracellular negative feedback loop, abolished the stochastic oscillations. Propagation of this feed-forward signal between SCN neurons then promotes quasi-circadian oscillations that arise as an emergent property of the SCN network. Experimental analysis and mathematical modeling argue that both intercellular coupling and molecular noise are required for the stochastic rhythms, providing a novel biological example of noise-induced oscillations. The emergence of stochastic circadian oscillations from the SCN network in the absence of cell-autonomous circadian oscillatory function highlights a previously unrecognized level of circadian organization.Author Summary: The suprachiasmatic nucleus (SCN) is the master circadian pacemaker in mammals that controls and coordinates physiological processes in a daily manner. The SCN is composed of a network of cells, with each cell acting as an autonomous oscillator. In isolated individual cells, timekeeping is not precise because of the inherent randomness in the biochemical reactions within each cell, involving its core clock components. However, in the SCN network, precise rhythms can emerge because of intercellular coupling. In this article, we study a loss-of-function mutation of BMAL1, a core clock component, which eliminates timekeeping in isolated cells. Surprisingly, in both experiments and mathematical simulations, we find that noisy rhythms emerge from the SCN network even in the presence of this BMAL1 mutation. This random yet coordinated timekeeping has not been observed in previous modeling and experimental work and indicates that a network of cells can utilize noise to help compensate for loss of a physiological function. In normal function, the SCN network mitigates any variability observed in individual cellular rhythms and produces a precise and rhythmic network timekeeping signal. When the individual cells are no longer rhythmic, the coupling pathways within the SCN network can propagate stochastic rhythms that are a reflection of both feed-forward coupling mechanisms and intracellular noise. Thus, in a manner analogous to central pattern generators in neural circuits, rhythmicity can arise as an emergent property of the network in the absence of component pacemaker or oscillator cells.

Suggested Citation

  • Caroline H Ko & Yujiro R Yamada & David K Welsh & Ethan D Buhr & Andrew C Liu & Eric E Zhang & Martin R Ralph & Steve A Kay & Daniel B Forger & Joseph S Takahashi, 2010. "Emergence of Noise-Induced Oscillations in the Central Circadian Pacemaker," PLOS Biology, Public Library of Science, vol. 8(10), pages 1-19, October.
  • Handle: RePEc:plo:pbio00:1000513
    DOI: 10.1371/journal.pbio.1000513
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1000513
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.1000513&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.1000513?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:1000513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.