IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0166448.html
   My bibliography  Save this article

Robust Satisficing Decision Making for Unmanned Aerial Vehicle Complex Missions under Severe Uncertainty

Author

Listed:
  • Xiaoting Ji
  • Yifeng Niu
  • Lincheng Shen

Abstract

This paper presents a robust satisficing decision-making method for Unmanned Aerial Vehicles (UAVs) executing complex missions in an uncertain environment. Motivated by the info-gap decision theory, we formulate this problem as a novel robust satisficing optimization problem, of which the objective is to maximize the robustness while satisfying some desired mission requirements. Specifically, a new info-gap based Markov Decision Process (IMDP) is constructed to abstract the uncertain UAV system and specify the complex mission requirements with the Linear Temporal Logic (LTL). A robust satisficing policy is obtained to maximize the robustness to the uncertain IMDP while ensuring a desired probability of satisfying the LTL specifications. To this end, we propose a two-stage robust satisficing solution strategy which consists of the construction of a product IMDP and the generation of a robust satisficing policy. In the first stage, a product IMDP is constructed by combining the IMDP with an automaton representing the LTL specifications. In the second, an algorithm based on robust dynamic programming is proposed to generate a robust satisficing policy, while an associated robustness evaluation algorithm is presented to evaluate the robustness. Finally, through Monte Carlo simulation, the effectiveness of our algorithms is demonstrated on an UAV search mission under severe uncertainty so that the resulting policy can maximize the robustness while reaching the desired performance level. Furthermore, by comparing the proposed method with other robust decision-making methods, it can be concluded that our policy can tolerate higher uncertainty so that the desired performance level can be guaranteed, which indicates that the proposed method is much more effective in real applications.

Suggested Citation

  • Xiaoting Ji & Yifeng Niu & Lincheng Shen, 2016. "Robust Satisficing Decision Making for Unmanned Aerial Vehicle Complex Missions under Severe Uncertainty," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-35, November.
  • Handle: RePEc:plo:pone00:0166448
    DOI: 10.1371/journal.pone.0166448
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0166448
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0166448&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0166448?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert J. Lempert & David G. Groves & Steven W. Popper & Steve C. Bankes, 2006. "A General, Analytic Method for Generating Robust Strategies and Narrative Scenarios," Management Science, INFORMS, vol. 52(4), pages 514-528, April.
    2. Jay K. Satia & Roy E. Lave, 1973. "Markovian Decision Processes with Uncertain Transition Probabilities," Operations Research, INFORMS, vol. 21(3), pages 728-740, June.
    3. Arnab Nilim & Laurent El Ghaoui, 2005. "Robust Control of Markov Decision Processes with Uncertain Transition Matrices," Operations Research, INFORMS, vol. 53(5), pages 780-798, October.
    4. Chelsea C. White & Hany K. Eldeib, 1994. "Markov Decision Processes with Imprecise Transition Probabilities," Operations Research, INFORMS, vol. 42(4), pages 739-749, August.
    5. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinlin Liu & Tian Jing & Linyi Hou, 2023. "An FW–GA Hybrid Algorithm Combined with Clustering for UAV Forest Fire Reconnaissance Task Assignment," Mathematics, MDPI, vol. 11(10), pages 1-29, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeynep Turgay & Fikri Karaesmen & Egemen Lerzan Örmeci, 2018. "Structural properties of a class of robust inventory and queueing control problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(8), pages 699-716, December.
    2. David L. Kaufman & Andrew J. Schaefer, 2013. "Robust Modified Policy Iteration," INFORMS Journal on Computing, INFORMS, vol. 25(3), pages 396-410, August.
    3. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    4. Garud N. Iyengar, 2005. "Robust Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 257-280, May.
    5. D. Škulj & R. Hable, 2013. "Coefficients of ergodicity for Markov chains with uncertain parameters," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 107-133, January.
    6. Wolfram Wiesemann & Daniel Kuhn & Berç Rustem, 2013. "Robust Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 153-183, February.
    7. V Varagapriya & Vikas Vikram Singh & Abdel Lisser, 2023. "Joint chance-constrained Markov decision processes," Annals of Operations Research, Springer, vol. 322(2), pages 1013-1035, March.
    8. Zhu, Zhicheng & Xiang, Yisha & Zhao, Ming & Shi, Yue, 2023. "Data-driven remanufacturing planning with parameter uncertainty," European Journal of Operational Research, Elsevier, vol. 309(1), pages 102-116.
    9. Peter Buchholz & Dimitri Scheftelowitsch, 2019. "Computation of weighted sums of rewards for concurrent MDPs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(1), pages 1-42, February.
    10. Schapaugh, Adam W. & Tyre, Andrew J., 2013. "Accounting for parametric uncertainty in Markov decision processes," Ecological Modelling, Elsevier, vol. 254(C), pages 15-21.
    11. Felipe Caro & Aparupa Das Gupta, 2022. "Robust control of the multi-armed bandit problem," Annals of Operations Research, Springer, vol. 317(2), pages 461-480, October.
    12. Erim Kardeş & Fernando Ordóñez & Randolph W. Hall, 2011. "Discounted Robust Stochastic Games and an Application to Queueing Control," Operations Research, INFORMS, vol. 59(2), pages 365-382, April.
    13. Rasouli, Mohammad & Saghafian, Soroush, 2018. "Robust Partially Observable Markov Decision Processes," Working Paper Series rwp18-027, Harvard University, John F. Kennedy School of Government.
    14. Wolfram Wiesemann & Daniel Kuhn & Berç Rustem, 2010. "Robust Markov Decision Processes," Working Papers 034, COMISEF.
    15. Varagapriya, V & Singh, Vikas Vikram & Lisser, Abdel, 2024. "Rank-1 transition uncertainties in constrained Markov decision processes," European Journal of Operational Research, Elsevier, vol. 318(1), pages 167-178.
    16. Arthur Flajolet & Sébastien Blandin & Patrick Jaillet, 2018. "Robust Adaptive Routing Under Uncertainty," Operations Research, INFORMS, vol. 66(1), pages 210-229, January.
    17. Erick Delage & Shie Mannor, 2010. "Percentile Optimization for Markov Decision Processes with Parameter Uncertainty," Operations Research, INFORMS, vol. 58(1), pages 203-213, February.
    18. Hyeong Chang, 2006. "Perfect information two-person zero-sum markov games with imprecise transition probabilities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(2), pages 335-351, October.
    19. Andrew E. B. Lim & J. George Shanthikumar, 2007. "Relative Entropy, Exponential Utility, and Robust Dynamic Pricing," Operations Research, INFORMS, vol. 55(2), pages 198-214, April.
    20. Arnab Nilim & Laurent El Ghaoui, 2005. "Robust Control of Markov Decision Processes with Uncertain Transition Matrices," Operations Research, INFORMS, vol. 53(5), pages 780-798, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0166448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.