IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v42y1994i4p739-749.html
   My bibliography  Save this article

Markov Decision Processes with Imprecise Transition Probabilities

Author

Listed:
  • Chelsea C. White

    (University of Michigan, Ann Arbor, Michigan)

  • Hany K. Eldeib

    (INTELSAT Corporation, Washington, D.C.)

Abstract

We present new numerical algorithms and bounds for the infinite horizon, discrete stage, finite state and action Markov decision process with imprecise transition probabilities. We assume that the transition probability mass vector for each state and action is described by a finite number of linear inequalities. This model of imprecision appears to be well suited for describing statistically determined confidence limits and/or natural language statements of likelihood. The numerical procedures for calculating an optimal max-min strategy are based on successive approximations, reward revision, and modified policy iteration. The bounds that are determined are at least as tight as currently available bounds for the case where the transition probabilities are precise.

Suggested Citation

  • Chelsea C. White & Hany K. Eldeib, 1994. "Markov Decision Processes with Imprecise Transition Probabilities," Operations Research, INFORMS, vol. 42(4), pages 739-749, August.
  • Handle: RePEc:inm:oropre:v:42:y:1994:i:4:p:739-749
    DOI: 10.1287/opre.42.4.739
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.42.4.739
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.42.4.739?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abhijit Gosavi, 2009. "Reinforcement Learning: A Tutorial Survey and Recent Advances," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 178-192, May.
    2. Xiaoting Ji & Yifeng Niu & Lincheng Shen, 2016. "Robust Satisficing Decision Making for Unmanned Aerial Vehicle Complex Missions under Severe Uncertainty," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-35, November.
    3. D. Škulj & R. Hable, 2013. "Coefficients of ergodicity for Markov chains with uncertain parameters," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 107-133, January.
    4. Zhu, Zhicheng & Xiang, Yisha & Zhao, Ming & Shi, Yue, 2023. "Data-driven remanufacturing planning with parameter uncertainty," European Journal of Operational Research, Elsevier, vol. 309(1), pages 102-116.
    5. Wolfram Wiesemann & Daniel Kuhn & Berç Rustem, 2013. "Robust Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 153-183, February.
    6. Zeynep Turgay & Fikri Karaesmen & Egemen Lerzan Örmeci, 2018. "Structural properties of a class of robust inventory and queueing control problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(8), pages 699-716, December.
    7. Garud N. Iyengar, 2005. "Robust Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 257-280, May.
    8. V Varagapriya & Vikas Vikram Singh & Abdel Lisser, 2023. "Joint chance-constrained Markov decision processes," Annals of Operations Research, Springer, vol. 322(2), pages 1013-1035, March.
    9. Peter Buchholz & Dimitri Scheftelowitsch, 2019. "Computation of weighted sums of rewards for concurrent MDPs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(1), pages 1-42, February.
    10. Hyeong Chang, 2006. "Perfect information two-person zero-sum markov games with imprecise transition probabilities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(2), pages 335-351, October.
    11. Erim Kardeş & Fernando Ordóñez & Randolph W. Hall, 2011. "Discounted Robust Stochastic Games and an Application to Queueing Control," Operations Research, INFORMS, vol. 59(2), pages 365-382, April.
    12. Schapaugh, Adam W. & Tyre, Andrew J., 2013. "Accounting for parametric uncertainty in Markov decision processes," Ecological Modelling, Elsevier, vol. 254(C), pages 15-21.
    13. Arnab Nilim & Laurent El Ghaoui, 2005. "Robust Control of Markov Decision Processes with Uncertain Transition Matrices," Operations Research, INFORMS, vol. 53(5), pages 780-798, October.
    14. David L. Kaufman & Andrew J. Schaefer, 2013. "Robust Modified Policy Iteration," INFORMS Journal on Computing, INFORMS, vol. 25(3), pages 396-410, August.
    15. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    16. Arthur Flajolet & Sébastien Blandin & Patrick Jaillet, 2018. "Robust Adaptive Routing Under Uncertainty," Operations Research, INFORMS, vol. 66(1), pages 210-229, January.
    17. Wolfram Wiesemann & Daniel Kuhn & Berç Rustem, 2010. "Robust Markov Decision Processes," Working Papers 034, COMISEF.
    18. Felipe Caro & Aparupa Das Gupta, 2022. "Robust control of the multi-armed bandit problem," Annals of Operations Research, Springer, vol. 317(2), pages 461-480, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:42:y:1994:i:4:p:739-749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.