IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i10p2400-d1152724.html
   My bibliography  Save this article

An FW–GA Hybrid Algorithm Combined with Clustering for UAV Forest Fire Reconnaissance Task Assignment

Author

Listed:
  • Xinlin Liu

    (College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China)

  • Tian Jing

    (School of System Engineering, National University of Defense Technology, Changsha 410073, China)

  • Linyi Hou

    (National Engineering Research Center of Geographic Information System, School of Geography and Information Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China)

Abstract

The assignment of tasks for unmanned aerial vehicles (UAVs) during forest fire reconnaissance is a highly complex and large-scale problem. Current task allocation methods struggle to strike a balance between solution speed and effectiveness. In this paper, a two-phase centralized UAV task assignment model based on expectation maximization (EM) clustering and the multidimensional knapsack model (MKP) is proposed for the forest fire reconnaissance task assignment. The fire situation information is acquired using the sensors carried by satellites at first. Then, the EM algorithm based on the Gaussian mixture model (GMM) is applied to get the initial position of every UAV. In the end, the MKP is applied for UAV task assignment based on the initial positions of the UAVs. An improved genetic algorithm (GA) based on the fireworks algorithm (FWA) is proposed for faster iteration speed. A simulation was carried out against the background of forest fires in Liangshan Prefecture, Sichuan Province, and the simulation’s results demonstrate that the task assignment model can quickly and effectively address task allocation problems on a large scale. In addition, the FW–GA hybrid algorithm has great advantages over the traditional GA, particularly in solving time, iteration convergence speed, and solution effectiveness. It can reduce up to 556% of the iteration time and increase objective function value by 1.7% compared to the standard GA. Furthermore, compared to the GA–SA algorithm, its solving time is up to 60 times lower. This paper provides a new idea for future large-scale UAV task assignment problems.

Suggested Citation

  • Xinlin Liu & Tian Jing & Linyi Hou, 2023. "An FW–GA Hybrid Algorithm Combined with Clustering for UAV Forest Fire Reconnaissance Task Assignment," Mathematics, MDPI, vol. 11(10), pages 1-29, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2400-:d:1152724
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/10/2400/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/10/2400/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaoting Ji & Yifeng Niu & Lincheng Shen, 2016. "Robust Satisficing Decision Making for Unmanned Aerial Vehicle Complex Missions under Severe Uncertainty," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-35, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjiao Zai & Junjie Wang & Guohui Li, 2023. "A Drone Scheduling Method for Emergency Power Material Transportation Based on Deep Reinforcement Learning Optimized PSO Algorithm," Sustainability, MDPI, vol. 15(17), pages 1-29, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2400-:d:1152724. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.