IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0159832.html
   My bibliography  Save this article

Capture-Recapture Estimators in Epidemiology with Applications to Pertussis and Pneumococcal Invasive Disease Surveillance

Author

Listed:
  • Toon Braeye
  • Jan Verheagen
  • Annick Mignon
  • Wim Flipse
  • Denis Pierard
  • Kris Huygen
  • Carole Schirvel
  • Niel Hens

Abstract

Introduction: Surveillance networks are often not exhaustive nor completely complementary. In such situations, capture-recapture methods can be used for incidence estimation. The choice of estimator and their robustness with respect to the homogeneity and independence assumptions are however not well documented. Methods: We investigated the performance of five different capture-recapture estimators in a simulation study. Eight different scenarios were used to detect and combine case-information. The scenarios increasingly violated assumptions of independence of samples and homogeneity of detection probabilities. Belgian datasets on invasive pneumococcal disease (IPD) and pertussis provided motivating examples. Results: No estimator was unbiased in all scenarios. Performance of the parametric estimators depended on how much of the dependency and heterogeneity were correctly modelled. Model building was limited by parameter estimability, availability of additional information (e.g. covariates) and the possibilities inherent to the method. In the most complex scenario, methods that allowed for detection probabilities conditional on previous detections estimated the total population size within a 20–30% error-range. Parametric estimators remained stable if individual data sources lost up to 50% of their data. The investigated non-parametric methods were more susceptible to data loss and their performance was linked to the dependence between samples; overestimating in scenarios with little dependence, underestimating in others. Issues with parameter estimability made it impossible to model all suggested relations between samples for the IPD and pertussis datasets. For IPD, the estimates for the Belgian incidence for cases aged 50 years and older ranged from 44 to58/100,000 in 2010. The estimates for pertussis (all ages, Belgium, 2014) ranged from 24.2 to30.8/100,000. Conclusion: We encourage the use of capture-recapture methods, but epidemiologists should preferably include datasets for which the underlying dependency structure is not too complex, a priori investigate this structure, compensate for it within the model and interpret the results with the remaining unmodelled heterogeneity in mind.

Suggested Citation

  • Toon Braeye & Jan Verheagen & Annick Mignon & Wim Flipse & Denis Pierard & Kris Huygen & Carole Schirvel & Niel Hens, 2016. "Capture-Recapture Estimators in Epidemiology with Applications to Pertussis and Pneumococcal Invasive Disease Surveillance," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-20, August.
  • Handle: RePEc:plo:pone00:0159832
    DOI: 10.1371/journal.pone.0159832
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159832
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0159832&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0159832?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shirley Pledger, 2005. "The Performance of Mixture Models in Heterogeneous Closed Population Capture–Recapture," Biometrics, The International Biometric Society, vol. 61(3), pages 868-873, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang Xuan Mao & Na You, 2009. "On Comparison of Mixture Models for Closed Population Capture–Recapture Studies," Biometrics, The International Biometric Society, vol. 65(2), pages 547-553, June.
    2. Hajo Holzmann & Axel Munk & Walter Zucchini, 2006. "On Identifiability in Capture–Recapture Models," Biometrics, The International Biometric Society, vol. 62(3), pages 934-936, September.
    3. Louis-Paul Rivest & Sophie Baillargeon, 2007. "Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population," Biometrics, The International Biometric Society, vol. 63(4), pages 999-1006, December.
    4. William A. Link, 2006. "The author replied as follows:," Biometrics, The International Biometric Society, vol. 62(3), pages 936-939, September.
    5. Alessio Farcomeni, 2015. "Latent class recapture models with flexible behavioural response," Statistica, Department of Statistics, University of Bologna, vol. 75(1), pages 5-17.
    6. Francesco Bartolucci & Fulvia Pennoni, 2007. "A Class of Latent Markov Models for Capture–Recapture Data Allowing for Time, Heterogeneity, and Behavior Effects," Biometrics, The International Biometric Society, vol. 63(2), pages 568-578, June.
    7. B. J. T. Morgan & M. S. Ridout, 2008. "A new mixture model for capture heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(4), pages 433-446, September.
    8. Marco Alfò & Dankmar Böhning & Irene Rocchetti, 2021. "Upper bound estimators of the population size based on ordinal models for capture‐recapture experiments," Biometrics, The International Biometric Society, vol. 77(1), pages 237-248, March.
    9. Rivest Louis-Paul, 2011. "A Lower Bound Model for Multiple Record Systems Estimation with Heterogeneous Catchability," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-21, May.
    10. Richard Arnold & Yu Hayakawa & Paul Yip, 2010. "Capture–Recapture Estimation Using Finite Mixtures of Arbitrary Dimension," Biometrics, The International Biometric Society, vol. 66(2), pages 644-655, June.
    11. Dankmar Böhning & Alberto Vidal-Diez & Rattana Lerdsuwansri & Chukiat Viwatwongkasem & Mark Arnold, 2013. "A Generalization of Chao's Estimator for Covariate Information," Biometrics, The International Biometric Society, vol. 69(4), pages 1033-1042, December.
    12. Dankmar Böhning, 2010. "Some General Comparative Points on Chao's and Zelterman's Estimators of the Population Size," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 221-236, June.
    13. Robert M. Dorazio & J. Andrew Royle, 2005. "Rejoinder to "The Performance of Mixture Models in Heterogeneous Closed Population Capture-Recapture"," Biometrics, The International Biometric Society, vol. 61(3), pages 874-876, September.
    14. Yang Liu & Rong Kuang & Guanfu Liu, 2024. "Penalized likelihood inference for the finite mixture of Poisson distributions from capture-recapture data," Statistical Papers, Springer, vol. 65(5), pages 2751-2773, July.
    15. Shirley Pledger & Kenneth H. Pollock & James L. Norris, 2010. "Open Capture–Recapture Models with Heterogeneity: II. Jolly–Seber Model," Biometrics, The International Biometric Society, vol. 66(3), pages 883-890, September.
    16. Orasa Anan & Dankmar Böhning & Antonello Maruotti, 2017. "Population size estimation and heterogeneity in capture–recapture data: a linear regression estimator based on the Conway–Maxwell–Poisson distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 49-79, March.
    17. Hannah Worthington & Rachel S. McCrea & Ruth King & Richard A. Griffiths, 2019. "Estimation of Population Size When Capture Probability Depends on Individual States," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(1), pages 154-172, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0159832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.