IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0157945.html
   My bibliography  Save this article

Application of Epidemiology Model on Complex Networks in Propagation Dynamics of Airspace Congestion

Author

Listed:
  • Xiaoxu Dai
  • Minghua Hu
  • Wen Tian
  • Daoyi Xie
  • Bin Hu

Abstract

This paper presents a propagation dynamics model for congestion propagation in complex networks of airspace. It investigates the application of an epidemiology model to complex networks by comparing the similarities and differences between congestion propagation and epidemic transmission. The model developed satisfies the constraints of actual motion in airspace, based on the epidemiology model. Exploiting the constraint that the evolution of congestion cluster in the airspace is always dynamic and heterogeneous, the SIR epidemiology model (one of the classical models in epidemic spreading) with logistic increase is applied to congestion propagation and shown to be more accurate in predicting the evolution of congestion peak than the model based on probability, which is common to predict the congestion propagation. Results from sample data show that the model not only predicts accurately the value and time of congestion peak, but also describes accurately the characteristics of congestion propagation. Then, a numerical study is performed in which it is demonstrated that the structure of the networks have different effects on congestion propagation in airspace. It is shown that in regions with severe congestion, the adjustment of dissipation rate is more significant than propagation rate in controlling the propagation of congestion.

Suggested Citation

  • Xiaoxu Dai & Minghua Hu & Wen Tian & Daoyi Xie & Bin Hu, 2016. "Application of Epidemiology Model on Complex Networks in Propagation Dynamics of Airspace Congestion," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-11, June.
  • Handle: RePEc:plo:pone00:0157945
    DOI: 10.1371/journal.pone.0157945
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0157945
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0157945&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0157945?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daganzo, Carlos F. & Laval, Jorge A., 2005. "Moving bottlenecks: A numerical method that converges in flows," Transportation Research Part B: Methodological, Elsevier, vol. 39(9), pages 855-863, November.
    2. Chen Liu & Wen-Bo Du & Wen-Xu Wang, 2014. "Particle Swarm Optimization with Scale-Free Interactions," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-8, May.
    3. Gentile, Guido & Meschini, Lorenzo & Papola, Natale, 2007. "Spillback congestion in dynamic traffic assignment: A macroscopic flow model with time-varying bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1114-1138, December.
    4. Du, Wen-Bo & Gao, Yang & Liu, Chen & Zheng, Zheng & Wang, Zhen, 2015. "Adequate is better: particle swarm optimization with limited-information," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 832-838.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adriana Giret & Carlos Carrascosa & Vicente Julian & Miguel Rebollo & Vicente Botti, 2018. "A Crowdsourcing Approach for Sustainable Last Mile Delivery," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    2. Wang, Shanshan & Schreckenberg, Michael & Guhr, Thomas, 2023. "Response functions as a new concept to study local dynamics in traffic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Zhongzhou & Liu, Jing & Wang, Shuai, 2016. "Traveling salesman problems with PageRank Distance on complex networks reveal community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 293-302.
    2. Xiao, Guanping & Zheng, Zheng & Wang, Haoqin, 2017. "Evolution of Linux operating system network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 249-258.
    3. Jiancheng Long & Ziyou Gao & Xiaomei Zhao & Aiping Lian & Penina Orenstein, 2011. "Urban Traffic Jam Simulation Based on the Cell Transmission Model," Networks and Spatial Economics, Springer, vol. 11(1), pages 43-64, March.
    4. Wuli Wang & Liming Duan & Yang Bai & Haoyu Wang & Hui Shao & Siyang Zhong, 2016. "A Triangle Mesh Standardization Method Based on Particle Swarm Optimization," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-14, August.
    5. Shu-bin Li & Bai-bai Fu & Jian-feng Zheng, 2013. "Dynamic Analysis of Traffic State and Congestion Propagation on Bidirectional Grid Network," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-7, November.
    6. Sun, Li & Ling, Ximan & He, Kun & Tan, Qian, 2016. "Community structure in traffic zones based on travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 356-363.
    7. Zhang, Xue-Jun & Xu, Guo-Qiang & Zhu, Yan-Bo & Xia, Yong-Xiang, 2016. "Cascade-robustness optimization of coupling preference in interconnected networks," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 123-129.
    8. Du, Wenbo & Zhang, Mingyuan & Ying, Wen & Perc, Matjaž & Tang, Ke & Cao, Xianbin & Wu, Dapeng, 2018. "The networked evolutionary algorithm: A network science perspective," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 33-43.
    9. Lordan, Oriol & Sallan, Jose M. & Escorihuela, Nuria & Gonzalez-Prieto, David, 2016. "Robustness of airline route networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 18-26.
    10. Wang, Haoqin & Chen, Zhen & Xiao, Guanping & Zheng, Zheng, 2016. "Network of networks in Linux operating system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 520-526.
    11. Wang, Xin-Wei & Chen, Zhen & Han, Chao, 2016. "Scheduling for single agile satellite, redundant targets problem using complex networks theory," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 125-132.
    12. Guido Gentile, 2018. "New Formulations of the Stochastic User Equilibrium with Logit Route Choice as an Extension of the Deterministic Model," Service Science, INFORMS, vol. 52(6), pages 1531-1547, December.
    13. Shuhua Chang & Xinyu Wang & Zheng Wang, 2015. "Modeling and Computation of Transboundary Industrial Pollution with Emission Permits Trading by Stochastic Differential Game," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-29, September.
    14. Sana Jawarneh & Salwani Abdullah, 2015. "Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-23, July.
    15. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    16. Yahyamozdarani, Raheleh & Tampère, Chris M.J., 2023. "The continuous signalized (COS) node model for dynamic traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 56-80.
    17. Mohamed A Mohamed & Ali M Eltamaly & Abdulrahman I Alolah, 2016. "PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-22, August.
    18. Sun, Peng Gang & Sun, Xiya, 2017. "Complete graph model for community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 88-97.
    19. Flötteröd, Gunnar & Rohde, Jannis, 2011. "Operational macroscopic modeling of complex urban road intersections," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 903-922, July.
    20. Yuchen Pan & Shuai Ding & Wenjuan Fan & Jing Li & Shanlin Yang, 2015. "Trust-Enhanced Cloud Service Selection Model Based on QoS Analysis," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-19, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0157945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.