IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0157343.html
   My bibliography  Save this article

Exploring the Structure of Spatial Representations

Author

Listed:
  • Tamas Madl
  • Stan Franklin
  • Ke Chen
  • Robert Trappl
  • Daniela Montaldi

Abstract

It has been suggested that the map-like representations that support human spatial memory are fragmented into sub-maps with local reference frames, rather than being unitary and global. However, the principles underlying the structure of these ‘cognitive maps’ are not well understood. We propose that the structure of the representations of navigation space arises from clustering within individual psychological spaces, i.e. from a process that groups together objects that are close in these spaces. Building on the ideas of representational geometry and similarity-based representations in cognitive science, we formulate methods for learning dissimilarity functions (metrics) characterizing participants’ psychological spaces. We show that these learned metrics, together with a probabilistic model of clustering based on the Bayesian cognition paradigm, allow prediction of participants’ cognitive map structures in advance. Apart from insights into spatial representation learning in human cognition, these methods could facilitate novel computational tools capable of using human-like spatial concepts. We also compare several features influencing spatial memory structure, including spatial distance, visual similarity and functional similarity, and report strong correlations between these dimensions and the grouping probability in participants’ spatial representations, providing further support for clustering in spatial memory.

Suggested Citation

  • Tamas Madl & Stan Franklin & Ke Chen & Robert Trappl & Daniela Montaldi, 2016. "Exploring the Structure of Spatial Representations," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-46, June.
  • Handle: RePEc:plo:pone00:0157343
    DOI: 10.1371/journal.pone.0157343
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0157343
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0157343&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0157343?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arne D. Ekstrom & Michael J. Kahana & Jeremy B. Caplan & Tony A. Fields & Eve A. Isham & Ehren L. Newman & Itzhak Fried, 2003. "Cellular networks underlying human spatial navigation," Nature, Nature, vol. 425(6954), pages 184-188, September.
    2. J. Gower, 1975. "Generalized procrustes analysis," Psychometrika, Springer;The Psychometric Society, vol. 40(1), pages 33-51, March.
    3. Roger Shepard, 1957. "Stimulus and response generalization: A stochastic model relating generalization to distance in psychological space," Psychometrika, Springer;The Psychometric Society, vol. 22(4), pages 325-345, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger Shepard, 1974. "Representation of structure in similarity data: Problems and prospects," Psychometrika, Springer;The Psychometric Society, vol. 39(4), pages 373-421, December.
    2. Meyners, Michael & Qannari, El Mostafa, 2001. "Relating principal component analysis on merged data sets to a regression approach," Technical Reports 2001,47, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Juliana Martins Ruzante & Valerie J. Davidson & Julie Caswell & Aamir Fazil & John A. L. Cranfield & Spencer J. Henson & Sven M. Anders & Claudia Schmidt & Jeffrey M. Farber, 2010. "A Multifactorial Risk Prioritization Framework for Foodborne Pathogens," Risk Analysis, John Wiley & Sons, vol. 30(5), pages 724-742, May.
    4. Barbara McGillivray & Gard B. Jenset & Khalid Salama & Donna Schut, 2022. "Investigating patterns of change, stability, and interaction among scientific disciplines using embeddings," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-15, December.
    5. Wei Wang & Stephen J Lycett & Noreen von Cramon-Taubadel & Jennie J H Jin & Christopher J Bae, 2012. "Comparison of Handaxes from Bose Basin (China) and the Western Acheulean Indicates Convergence of Form, Not Cognitive Differences," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-7, April.
    6. Lisa Sakamoto & Hiromi Kajiya-Kanegae & Koji Noshita & Hideki Takanashi & Masaaki Kobayashi & Toru Kudo & Kentaro Yano & Tsuyoshi Tokunaga & Nobuhiro Tsutsumi & Hiroyoshi Iwata, 2019. "Comparison of shape quantification methods for genomic prediction, and genome-wide association study of sorghum seed morphology," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-15, November.
    7. Mardia, Kanti V. & Wiechers, Henrik & Eltzner, Benjamin & Huckemann, Stephan F., 2022. "Principal component analysis and clustering on manifolds," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    8. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    9. John Gower & Garmt Dijksterhuis, 1994. "Multivariate analysis of coffee images: A study in the simultaneous display of multivariate quantitative and qualitative variables for several assessors," Quality & Quantity: International Journal of Methodology, Springer, vol. 28(2), pages 165-184, May.
    10. Modroño Herrán, Juan Ignacio & Fernández Aguirre, María Carmen & Landaluce Calvo, M. Isabel, 2003. "Una propuesta para el análisis de tablas múltiples," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    11. Peter Verboon & Willem Heiser, 1992. "Resistant orthogonal procrustes analysis," Journal of Classification, Springer;The Classification Society, vol. 9(2), pages 237-256, December.
    12. Michael Brusco & Stephanie Stahl, 2001. "Compact integer-programming models for extracting subsets of stimuli from confusion matrices," Psychometrika, Springer;The Psychometric Society, vol. 66(3), pages 405-419, September.
    13. Dahl, Tobias & Naes, Tormod, 2006. "A bridge between Tucker-1 and Carroll's generalized canonical analysis," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3086-3098, July.
    14. Young-Jin Kwon & Do-Hyun Kim & Byung-Chang Son & Kyoung-Ho Choi & Sungbok Kwak & Taehong Kim, 2022. "A Work-Related Musculoskeletal Disorders (WMSDs) Risk-Assessment System Using a Single-View Pose Estimation Model," IJERPH, MDPI, vol. 19(16), pages 1-19, August.
    15. V Alex Sotola & Cody A Craig & Peter J Pfaff & Jeremy D Maikoetter & Noland H Martin & Timothy H Bonner, 2019. "Effect of preservation on fish morphology over time: Implications for morphological studies," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-16, March.
    16. Anna Brown, 2016. "Item Response Models for Forced-Choice Questionnaires: A Common Framework," Psychometrika, Springer;The Psychometric Society, vol. 81(1), pages 135-160, March.
    17. Thomas W. Davies & Philipp Gunz & Fred Spoor & Zeresenay Alemseged & Agness Gidna & Jean-Jacques Hublin & William H. Kimbel & Ottmar Kullmer & William P. Plummer & Clément Zanolli & Matthew M. Skinner, 2024. "Dental morphology in Homo habilis and its implications for the evolution of early Homo," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Huckemann, Stephan & Hotz, Thomas, 2009. "Principal component geodesics for planar shape spaces," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 699-714, April.
    19. Erdem, Seda & Rigby, Dan, 2011. "Using Best Worst Scaling To Investigate Perceptions Of Control & Concern Over Food And Non-Food Risks," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108790, Agricultural Economics Society.
    20. Ian L. Dryden & Jonathan D. Hirst & James L. Melville, 2007. "Statistical Analysis of Unlabeled Point Sets: Comparing Molecules in Chemoinformatics," Biometrics, The International Biometric Society, vol. 63(1), pages 237-251, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0157343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.