IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0224695.html
   My bibliography  Save this article

Comparison of shape quantification methods for genomic prediction, and genome-wide association study of sorghum seed morphology

Author

Listed:
  • Lisa Sakamoto
  • Hiromi Kajiya-Kanegae
  • Koji Noshita
  • Hideki Takanashi
  • Masaaki Kobayashi
  • Toru Kudo
  • Kentaro Yano
  • Tsuyoshi Tokunaga
  • Nobuhiro Tsutsumi
  • Hiroyoshi Iwata

Abstract

Seed shape is an important agronomic trait with continuous variation among genotypes. Therefore, the quantitative evaluation of this variation is highly important. Among geometric morphometrics methods, elliptic Fourier analysis and semi-landmark analysis are often used for the quantification of biological shape variations. Elliptic Fourier analysis is an approximation method to treat contours as a waveform. Semi-landmark analysis is a method of superimposed points in which the differences of multiple contour positions are minimized. However, no detailed comparison of these methods has been undertaken. Moreover, these shape descriptors vary when the scale and direction of the contour and the starting point of the contour trace change. Thus, these methods should be compared with respect to the standardization of the scale and direction of the contour and the starting point of the contour trace. In the present study, we evaluated seed shape variations in a sorghum (Sorghum bicolor Moench) germplasm collection to analyze the association between shape variations and genome-wide single-nucleotide polymorphisms by genomic prediction (GP) and genome-wide association studies (GWAS). In our analysis, we used all possible combinations of three shape description methods and eight standardization procedures for the scale and direction of the contour as well as the starting point of the contour trace; these combinations were compared in terms of GP accuracy and the GWAS results. We compared the shape description methods (elliptic Fourier descriptors and the coordinates of superposed pseudo-landmark points) and found that principal component analysis of their quantitative descriptors yielded similar results. Different scaling and direction standardization procedures caused differences in the principal component scores, average shape, and the results of GP and GWAS.

Suggested Citation

  • Lisa Sakamoto & Hiromi Kajiya-Kanegae & Koji Noshita & Hideki Takanashi & Masaaki Kobayashi & Toru Kudo & Kentaro Yano & Tsuyoshi Tokunaga & Nobuhiro Tsutsumi & Hiroyoshi Iwata, 2019. "Comparison of shape quantification methods for genomic prediction, and genome-wide association study of sorghum seed morphology," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-15, November.
  • Handle: RePEc:plo:pone00:0224695
    DOI: 10.1371/journal.pone.0224695
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0224695
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0224695&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0224695?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Gower, 1975. "Generalized procrustes analysis," Psychometrika, Springer;The Psychometric Society, vol. 40(1), pages 33-51, March.
    2. Hiroyoshi Iwata & Kaworu Ebana & Yusaku Uga & Takeshi Hayashi, 2015. "Genomic Prediction of Biological Shape: Elliptic Fourier Analysis and Kernel Partial Least Squares (PLS) Regression Applied to Grain Shape Prediction in Rice (Oryza sativa L.)," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meyners, Michael & Qannari, El Mostafa, 2001. "Relating principal component analysis on merged data sets to a regression approach," Technical Reports 2001,47, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Juliana Martins Ruzante & Valerie J. Davidson & Julie Caswell & Aamir Fazil & John A. L. Cranfield & Spencer J. Henson & Sven M. Anders & Claudia Schmidt & Jeffrey M. Farber, 2010. "A Multifactorial Risk Prioritization Framework for Foodborne Pathogens," Risk Analysis, John Wiley & Sons, vol. 30(5), pages 724-742, May.
    3. Barbara McGillivray & Gard B. Jenset & Khalid Salama & Donna Schut, 2022. "Investigating patterns of change, stability, and interaction among scientific disciplines using embeddings," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-15, December.
    4. Wei Wang & Stephen J Lycett & Noreen von Cramon-Taubadel & Jennie J H Jin & Christopher J Bae, 2012. "Comparison of Handaxes from Bose Basin (China) and the Western Acheulean Indicates Convergence of Form, Not Cognitive Differences," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-7, April.
    5. Mardia, Kanti V. & Wiechers, Henrik & Eltzner, Benjamin & Huckemann, Stephan F., 2022. "Principal component analysis and clustering on manifolds," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    6. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    7. John Gower & Garmt Dijksterhuis, 1994. "Multivariate analysis of coffee images: A study in the simultaneous display of multivariate quantitative and qualitative variables for several assessors," Quality & Quantity: International Journal of Methodology, Springer, vol. 28(2), pages 165-184, May.
    8. Modroño Herrán, Juan Ignacio & Fernández Aguirre, María Carmen & Landaluce Calvo, M. Isabel, 2003. "Una propuesta para el análisis de tablas múltiples," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    9. Peter Verboon & Willem Heiser, 1992. "Resistant orthogonal procrustes analysis," Journal of Classification, Springer;The Classification Society, vol. 9(2), pages 237-256, December.
    10. Dahl, Tobias & Naes, Tormod, 2006. "A bridge between Tucker-1 and Carroll's generalized canonical analysis," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3086-3098, July.
    11. Young-Jin Kwon & Do-Hyun Kim & Byung-Chang Son & Kyoung-Ho Choi & Sungbok Kwak & Taehong Kim, 2022. "A Work-Related Musculoskeletal Disorders (WMSDs) Risk-Assessment System Using a Single-View Pose Estimation Model," IJERPH, MDPI, vol. 19(16), pages 1-19, August.
    12. V Alex Sotola & Cody A Craig & Peter J Pfaff & Jeremy D Maikoetter & Noland H Martin & Timothy H Bonner, 2019. "Effect of preservation on fish morphology over time: Implications for morphological studies," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-16, March.
    13. Thomas W. Davies & Philipp Gunz & Fred Spoor & Zeresenay Alemseged & Agness Gidna & Jean-Jacques Hublin & William H. Kimbel & Ottmar Kullmer & William P. Plummer & Clément Zanolli & Matthew M. Skinner, 2024. "Dental morphology in Homo habilis and its implications for the evolution of early Homo," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Huckemann, Stephan & Hotz, Thomas, 2009. "Principal component geodesics for planar shape spaces," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 699-714, April.
    15. Erdem, Seda & Rigby, Dan, 2011. "Using Best Worst Scaling To Investigate Perceptions Of Control & Concern Over Food And Non-Food Risks," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108790, Agricultural Economics Society.
    16. Ian L. Dryden & Jonathan D. Hirst & James L. Melville, 2007. "Statistical Analysis of Unlabeled Point Sets: Comparing Molecules in Chemoinformatics," Biometrics, The International Biometric Society, vol. 63(1), pages 237-251, March.
    17. Edmund Peay, 1988. "Multidimensional rotation and scaling of configurations to optimal agreement," Psychometrika, Springer;The Psychometric Society, vol. 53(2), pages 199-208, June.
    18. Bajocco, S. & Rosati, L. & Ricotta, C., 2010. "Knowing fire incidence through fuel phenology: A remotely sensed approach," Ecological Modelling, Elsevier, vol. 221(1), pages 59-66.
    19. Kensuke Okada & Shin-ichi Mayekawa, 2018. "Post-processing of Markov chain Monte Carlo output in Bayesian latent variable models with application to multidimensional scaling," Computational Statistics, Springer, vol. 33(3), pages 1457-1473, September.
    20. Angela Andreella & Livio Finos, 2022. "Procrustes Analysis for High-Dimensional Data," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1422-1438, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0224695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.