IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0153782.html
   My bibliography  Save this article

Using Synthetic Mouse Spike-In Transcripts to Evaluate RNA-Seq Analysis Tools

Author

Listed:
  • Dena Leshkowitz
  • Ester Feldmesser
  • Gilgi Friedlander
  • Ghil Jona
  • Elena Ainbinder
  • Yisrael Parmet
  • Shirley Horn-Saban

Abstract

One of the key applications of next-generation sequencing (NGS) technologies is RNA-Seq for transcriptome genome-wide analysis. Although multiple studies have evaluated and benchmarked RNA-Seq tools dedicated to gene level analysis, few studies have assessed their effectiveness on the transcript-isoform level. Alternative splicing is a naturally occurring phenomenon in eukaryotes, significantly increasing the biodiversity of proteins that can be encoded by the genome. The aim of this study was to assess and compare the ability of the bioinformatics approaches and tools to assemble, quantify and detect differentially expressed transcripts using RNA-Seq data, in a controlled experiment. To this end, in vitro synthesized mouse spike-in control transcripts were added to the total RNA of differentiating mouse embryonic bodies, and their expression patterns were measured. This novel approach was used to assess the accuracy of the tools, as established by comparing the observed results versus the results expected of the mouse controlled spiked-in transcripts. We found that detection of differential expression at the gene level is adequate, yet on the transcript-isoform level, all tools tested lacked accuracy and precision.

Suggested Citation

  • Dena Leshkowitz & Ester Feldmesser & Gilgi Friedlander & Ghil Jona & Elena Ainbinder & Yisrael Parmet & Shirley Horn-Saban, 2016. "Using Synthetic Mouse Spike-In Transcripts to Evaluate RNA-Seq Analysis Tools," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-20, April.
  • Handle: RePEc:plo:pone00:0153782
    DOI: 10.1371/journal.pone.0153782
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0153782
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0153782&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0153782?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Timothy W. Nilsen & Brenton R. Graveley, 2010. "Expansion of the eukaryotic proteome by alternative splicing," Nature, Nature, vol. 463(7280), pages 457-463, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timofey A. Karginov & Antoine Ménoret & Anthony T. Vella, 2022. "Optimal CD8+ T cell effector function requires costimulation-induced RNA-binding proteins that reprogram the transcript isoform landscape," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Feng Wang & Yang Xu & Robert Wang & Beatrice Zhang & Noah Smith & Amber Notaro & Samantha Gaerlan & Eric Kutschera & Kathryn E. Kadash-Edmondson & Yi Xing & Lan Lin, 2023. "TEQUILA-seq: a versatile and low-cost method for targeted long-read RNA sequencing," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Shijia Zhu & Guohua Wang & Bo Liu & Yadong Wang, 2013. "Modeling Exon Expression Using Histone Modifications," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-15, June.
    4. Zhiyi Qin & Xuegong Zhang, 2017. "The identification of switch-like alternative splicing exons among multiple samples with RNA-Seq data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-12, May.
    5. Huijuan Feng & Xiang-Jun Lu & Suvrajit Maji & Linxi Liu & Dmytro Ustianenko & Noam D. Rudnick & Chaolin Zhang, 2024. "Structure-based prediction and characterization of photo-crosslinking in native protein–RNA complexes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Adel Al Jord & Gaëlle Letort & Soline Chanet & Feng-Ching Tsai & Christophe Antoniewski & Adrien Eichmuller & Christelle Da Silva & Jean-René Huynh & Nir S. Gov & Raphaël Voituriez & Marie-Émilie Terr, 2022. "Cytoplasmic forces functionally reorganize nuclear condensates in oocytes," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Shenglei Feng & Jinmei Li & Hui Wen & Kuan Liu & Yiqian Gui & Yujiao Wen & Xiaoli Wang & Shuiqiao Yuan, 2022. "hnRNPH1 recruits PTBP2 and SRSF3 to modulate alternative splicing in germ cells," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    8. Komal Soni & Pravin Kumar Ankush Jagtap & Santiago Martínez-Lumbreras & Sophie Bonnal & Arie Geerlof & Ralf Stehle & Bernd Simon & Juan Valcárcel & Michael Sattler, 2023. "Structural basis for specific RNA recognition by the alternative splicing factor RBM5," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Yocelyn Recinos & Dmytro Ustianenko & Yow-Tyng Yeh & Xiaojian Wang & Martin Jacko & Lekha V. Yesantharao & Qiyang Wu & Chaolin Zhang, 2024. "CRISPR-dCas13d-based deep screening of proximal and distal splicing-regulatory elements," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Nicholas C. Gervais & Rebecca S. Shapiro, 2024. "Discovering the hidden function in fungal genomes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Santiago, Enrique, 2015. "Probability and time to fixation of an evolving sequence," Theoretical Population Biology, Elsevier, vol. 104(C), pages 78-85.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0153782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.