IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0150669.html
   My bibliography  Save this article

FHSA-SED: Two-Locus Model Detection for Genome-Wide Association Study with Harmony Search Algorithm

Author

Listed:
  • Shouheng Tuo
  • Junying Zhang
  • Xiguo Yuan
  • Yuanyuan Zhang
  • Zhaowen Liu

Abstract

Motivation: Two-locus model is a typical significant disease model to be identified in genome-wide association study (GWAS). Due to intensive computational burden and diversity of disease models, existing methods have drawbacks on low detection power, high computation cost, and preference for some types of disease models. Method: In this study, two scoring functions (Bayesian network based K2-score and Gini-score) are used for characterizing two SNP locus as a candidate model, the two criteria are adopted simultaneously for improving identification power and tackling the preference problem to disease models. Harmony search algorithm (HSA) is improved for quickly finding the most likely candidate models among all two-locus models, in which a local search algorithm with two-dimensional tabu table is presented to avoid repeatedly evaluating some disease models that have strong marginal effect. Finally G-test statistic is used to further test the candidate models. Results: We investigate our method named FHSA-SED on 82 simulated datasets and a real AMD dataset, and compare it with two typical methods (MACOED and CSE) which have been developed recently based on swarm intelligent search algorithm. The results of simulation experiments indicate that our method outperforms the two compared algorithms in terms of detection power, computation time, evaluation times, sensitivity (TPR), specificity (SPC), positive predictive value (PPV) and accuracy (ACC). Our method has identified two SNPs (rs3775652 and rs10511467) that may be also associated with disease in AMD dataset.

Suggested Citation

  • Shouheng Tuo & Junying Zhang & Xiguo Yuan & Yuanyuan Zhang & Zhaowen Liu, 2016. "FHSA-SED: Two-Locus Model Detection for Genome-Wide Association Study with Harmony Search Algorithm," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-27, March.
  • Handle: RePEc:plo:pone00:0150669
    DOI: 10.1371/journal.pone.0150669
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150669
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0150669&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0150669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qingrun Zhang & Quan Long & Jurg Ott, 2014. "AprioriGWAS, a New Pattern Mining Strategy for Detecting Genetic Variants Associated with Disease through Interaction Effects," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-14, June.
    2. Walton, S. & Hassan, O. & Morgan, K. & Brown, M.R., 2011. "Modified cuckoo search: A new gradient free optimisation algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 44(9), pages 710-718.
    3. Wanwan Tang & Xuebing Wu & Rui Jiang & Yanda Li, 2009. "Epistatic Module Detection for Case-Control Studies: A Bayesian Model with a Gibbs Sampling Strategy," PLOS Genetics, Public Library of Science, vol. 5(5), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shouheng Tuo & Zong Woo Geem & Jin Hee Yoon, 2020. "A New Method for Analyzing the Performance of the Harmony Search Algorithm," Mathematics, MDPI, vol. 8(9), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weibo Zhao & Dongxiao Niu, 2017. "Prediction of CO 2 Emission in China’s Power Generation Industry with Gauss Optimized Cuckoo Search Algorithm and Wavelet Neural Network Based on STIRPAT model with Ridge Regression," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    2. Li Xiangfei & Zhang Zaisheng & Huang Chao, 2014. "An EPC Forecasting Method for Stock Index Based on Integrating Empirical Mode Decomposition, SVM and Cuckoo Search Algorithm," Journal of Systems Science and Information, De Gruyter, vol. 2(6), pages 481-504, December.
    3. Piechocki, Janusz & Ambroziak, Dominik & Palkowski, Aleksander & Redlarski, Grzegorz, 2014. "Use of Modified Cuckoo Search algorithm in the design process of integrated power systems for modern and energy self-sufficient farms," Applied Energy, Elsevier, vol. 114(C), pages 901-908.
    4. Thang Trung Nguyen & Bach Hoang Dinh & Nguyen Vu Quynh & Minh Quan Duong & Le Van Dai, 2018. "A Novel Algorithm for Optimal Operation of Hydrothermal Power Systems under Considering the Constraints in Transmission Networks," Energies, MDPI, vol. 11(1), pages 1-21, January.
    5. Qingrun Zhang & Quan Long & Jurg Ott, 2014. "AprioriGWAS, a New Pattern Mining Strategy for Detecting Genetic Variants Associated with Disease through Interaction Effects," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-14, June.
    6. Iksoo Huh & Min-Seok Kwon & Taesung Park, 2015. "An Efficient Stepwise Statistical Test to Identify Multiple Linked Human Genetic Variants Associated with Specific Phenotypic Traits," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-13, September.
    7. Jeng-Shyang Pan & Pei-Cheng Song & Shu-Chuan Chu & Yan-Jun Peng, 2020. "Improved Compact Cuckoo Search Algorithm Applied to Location of Drone Logistics Hub," Mathematics, MDPI, vol. 8(3), pages 1-19, March.
    8. Yang, Qiangda & Liu, Peng & Zhang, Jie & Dong, Ning, 2022. "Combined heat and power economic dispatch using an adaptive cuckoo search with differential evolution mutation," Applied Energy, Elsevier, vol. 307(C).
    9. Coelho, Leandro dos Santos & Klein, Carlos Eduardo & Sabat, Samrat L. & Mariani, Viviana Cocco, 2014. "Optimal chiller loading for energy conservation using a new differential cuckoo search approach," Energy, Elsevier, vol. 75(C), pages 237-243.
    10. Xie, Bing & Ge, Fudong, 2023. "Parameters and order identification of fractional-order epidemiological systems by Lévy-PSO and its application for the spread of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    11. Jiang, Ping & Liu, Feng & Song, Yiliao, 2017. "A hybrid forecasting model based on date-framework strategy and improved feature selection technology for short-term load forecasting," Energy, Elsevier, vol. 119(C), pages 694-709.
    12. Oruc, Ridvan & Baklacioglu, Tolga, 2022. "Modeling of aircraft performance parameters with metaheuristic methods to achieve specific excess power contours using energy maneuverability method," Energy, Elsevier, vol. 259(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0150669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.