IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i3p333-d327741.html
   My bibliography  Save this article

Improved Compact Cuckoo Search Algorithm Applied to Location of Drone Logistics Hub

Author

Listed:
  • Jeng-Shyang Pan

    (College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Pei-Cheng Song

    (College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Shu-Chuan Chu

    (College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Yan-Jun Peng

    (College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

Abstract

Drone logistics can play an important role in logistics at the end of the supply chain and special environmental logistics. At present, drone logistics is in the initial development stage, and the location of drone logistics hubs is an important issue in the optimization of logistics systems. This paper implements a compact cuckoo search algorithm with mixed uniform sampling technology, and, for the problem of weak search ability of the algorithm, this paper combines the method of recording the key positions of the search process and increasing the number of generated solutions to achieve further improvements, as well as implements the improved compact cuckoo search algorithm. Then, this paper uses 28 test functions to verify the algorithm. Aiming at the problem of the location of drone logistics hubs in remote areas or rural areas, this paper establishes a simple model that considers the traffic around the village, the size of the village, and other factors. It is suitable for selecting the location of the logistics hub in advance, reducing the cost of drone logistics, and accelerating the large-scale application of drone logistics. This paper uses the proposed algorithm for testing, and the test results indicate that the proposed algorithm has strong competitiveness in the proposed model.

Suggested Citation

  • Jeng-Shyang Pan & Pei-Cheng Song & Shu-Chuan Chu & Yan-Jun Peng, 2020. "Improved Compact Cuckoo Search Algorithm Applied to Location of Drone Logistics Hub," Mathematics, MDPI, vol. 8(3), pages 1-19, March.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:3:p:333-:d:327741
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/3/333/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/3/333/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Walton, S. & Hassan, O. & Morgan, K. & Brown, M.R., 2011. "Modified cuckoo search: A new gradient free optimisation algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 44(9), pages 710-718.
    2. Ai-Qing Tian & Shu-Chuan Chu & Jeng-Shyang Pan & Huanqing Cui & Wei-Min Zheng, 2020. "A Compact Pigeon-Inspired Optimization for Maximum Short-Term Generation Mode in Cascade Hydroelectric Power Station," Sustainability, MDPI, vol. 12(3), pages 1-19, January.
    3. John Gunnar Carlsson & Siyuan Song, 2018. "Coordinated Logistics with a Truck and a Drone," Management Science, INFORMS, vol. 64(9), pages 4052-4069, September.
    4. Adrienne Welch Sudbury & E. Bruce Hutchinson, 2016. "A Cost Analysis of Amazon Prime Air (Drone Delivery)," Journal for Economic Educators, Middle Tennessee State University, Business and Economic Research Center, vol. 16(1), pages 1-12, Fall.
    5. Niels Agatz & Paul Bouman & Marie Schmidt, 2018. "Optimization Approaches for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 52(4), pages 965-981, August.
    6. Jiyoon Park & Solhee Kim & Kyo Suh, 2018. "A Comparative Analysis of the Environmental Benefits of Drone-Based Delivery Services in Urban and Rural Areas," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Hong-Jiang & Pan, Jeng-Shyang & Nguyen, Trong-The & Weng, Shaowei, 2022. "Distribution network reconfiguration with distributed generation based on parallel slime mould algorithm," Energy, Elsevier, vol. 244(PB).
    2. Dukkanci, Okan & Campbell, James F. & Kara, Bahar Y., 2024. "Facility location decisions for drone delivery: A literature review," European Journal of Operational Research, Elsevier, vol. 316(2), pages 397-418.
    3. Boris V. Rumiantsev & Rasul A. Kochkarov & Azret A. Kochkarov, 2023. "Graph-Clustering Method for Construction of the Optimal Movement Trajectory under the Terrain Patrolling," Mathematics, MDPI, vol. 11(1), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. She, Ruifeng & Ouyang, Yanfeng, 2024. "Hybrid truck–drone delivery under aerial traffic congestion," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
    2. Qiqian Zhang & Xiao Huang & Honghai Zhang & Chunyun He, 2023. "Research on Logistics Path Optimization for a Two-Stage Collaborative Delivery System Using Vehicles and UAVs," Sustainability, MDPI, vol. 15(17), pages 1-20, September.
    3. Tengkuo Zhu & Stephen D. Boyles & Avinash Unnikrishnan, 2024. "Battery Electric Vehicle Traveling Salesman Problem with Drone," Networks and Spatial Economics, Springer, vol. 24(1), pages 49-97, March.
    4. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2024. "Electric van-based robot deliveries with en-route charging," European Journal of Operational Research, Elsevier, vol. 317(3), pages 806-826.
    5. Snežana Tadić & Mladen Krstić & Ljubica Radovanović, 2024. "Assessing Strategies to Overcome Barriers for Drone Usage in Last-Mile Logistics: A Novel Hybrid Fuzzy MCDM Model," Mathematics, MDPI, vol. 12(3), pages 1-25, January.
    6. Zhao, Lei & Bi, Xinhua & Li, Gendao & Dong, Zhaohui & Xiao, Ni & Zhao, Anni, 2022. "Robust traveling salesman problem with multiple drones: Parcel delivery under uncertain navigation environments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    7. Sun, Xuting & Kuo, Yong-Hong & Xue, Weili & Li, Yanzhi, 2024. "Technology-driven logistics and supply chain management for societal impacts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    8. Madani, Batool & Ndiaye, Malick & Salhi, Said, 2024. "Hybrid truck-drone delivery system with multi-visits and multi-launch and retrieval locations: Mathematical model and adaptive variable neighborhood search with neighborhood categorization," European Journal of Operational Research, Elsevier, vol. 316(1), pages 100-125.
    9. Chen, Heng & Hu, Zhangchen & Solak, Senay, 2021. "Improved delivery policies for future drone-based delivery systems," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1181-1201.
    10. Joonyup Eun & Byung Duk Song & Sangbok Lee & Dae-Eun Lim, 2019. "Mathematical Investigation on the Sustainability of UAV Logistics," Sustainability, MDPI, vol. 11(21), pages 1-15, October.
    11. Moshref-Javadi, Mohammad & Lee, Seokcheon & Winkenbach, Matthias, 2020. "Design and evaluation of a multi-trip delivery model with truck and drones," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    12. Xia, Yang & Zeng, Wenjia & Zhang, Canrong & Yang, Hai, 2023. "A branch-and-price-and-cut algorithm for the vehicle routing problem with load-dependent drones," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 80-110.
    13. Lemardelé, Clément & Estrada, Miquel & Pagès, Laia & Bachofner, Mónika, 2021. "Potentialities of drones and ground autonomous delivery devices for last-mile logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    14. Dell’Amico, Mauro & Montemanni, Roberto & Novellani, Stefano, 2021. "Algorithms based on branch and bound for the flying sidekick traveling salesman problem," Omega, Elsevier, vol. 104(C).
    15. Salama, Mohamed R. & Srinivas, Sharan, 2022. "Collaborative truck multi-drone routing and scheduling problem: Package delivery with flexible launch and recovery sites," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    16. Sandun Perera & Milind Dawande & Ganesh Janakiraman & Vijay Mookerjee, 2020. "Retail Deliveries by Drones: How Will Logistics Networks Change?," Production and Operations Management, Production and Operations Management Society, vol. 29(9), pages 2019-2034, September.
    17. Jiang, Jie & Dai, Ying & Yang, Fei & Ma, Zujun, 2024. "A multi-visit flexible-docking vehicle routing problem with drones for simultaneous pickup and delivery services," European Journal of Operational Research, Elsevier, vol. 312(1), pages 125-137.
    18. Tang, Christopher S. & Veelenturf, Lucas P., 2019. "The strategic role of logistics in the industry 4.0 era," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 1-11.
    19. Nguyen, Minh Anh & Dang, Giang Thi-Huong & Hà, Minh Hoàng & Pham, Minh-Trien, 2022. "The min-cost parallel drone scheduling vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 299(3), pages 910-930.
    20. Zhang, Juan & Campbell, James F. & Sweeney, Donald C., 2024. "A continuous approximation approach to integrated truck and drone delivery systems," Omega, Elsevier, vol. 126(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:3:p:333-:d:327741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.